1
|
Xie X, Mo L, Liu P, Liu C, Liu M, Deng Y, Zhang P, Yuan J, Song T, Ma L. Application of 3D-PCASL combined with t-ASL and MRA in the diagnosis of patients with isolated vertigo induced by posterior circulation ischemia. Magn Reson Imaging 2024; 110:78-85. [PMID: 38636674 DOI: 10.1016/j.mri.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Isolated vertigo induced by posterior circulation ischemia (PCIV) can further progress into posterior circulation infarction. This study aimed to explore the diagnostic values of three-dimensional pseudo-continuous arterial spin labeling (3D-PCASL) combined with territorial arterial spin labeling (t-ASL) and magnetic resonance angiography (MRA) in visualizing and evaluating PCIV, seeking improved diagnostic tools for clinical guidance. METHODS 28 PCIVs (11 males, 17 females, aged from 55 to 83 years, mean age: 69.68 ± 9.01 years) and 28 healthy controls (HCs, 12 male, 16 female, aged from 56 to 87 years, mean age: 66.75 ± 9.86 years) underwent conventional magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), MRA, 3D-PCASL, and t-ASL. We compared the incidence of anatomic variants of the posterior circle of Willis in MRA, cerebral blood flow (CBF) and anterior collateral blood flow on postprocessing maps obtained from 3D-PCASL and t-ASL sequence between PCIVs and HCs. Chi-square test and paired t-test were analyzed statistically with SPSS 24.0 software. RESULTS 7 PCIVs (7/28, 25%) and 6 HCs (6/28, 21%) showed fetal posterior cerebral artery (FPCA) on MRA, including 1 HC, and 6 PCIVs with FPCA appeared hypoperfusion. 18 PCIVs (64%) and 2 HCs (7%) showed hypoperfusion in the posterior circulation (PC), including 1 HC and 7 PCIVs displayed anterior circulation collateral flow. Chi-square analyses demonstrated a difference in PC hypoperfusion between PCIVs and HCs, whether in the whole or FPCA-positive group assessment (P < 0.05). Paired t-test showed that the CBF values were significant difference for the bilateral PC asymmetrical perfusion in the PCIVs (P < 0.01). When compared to the bilateral PC symmetrical non-hypoperfusion area in the PCIVs and HCs, the CBF values were not significant (P > 0.05). The CBF values of the PC in PCIVs were lower than in HCs (P < 0.05). The reduction rate in the hypoperfusion side of the bilateral PC asymmetrical perfusion of the PCIVs ranged from 4% to 37%, while the HCs reduction rate was 7.7%. The average PC symmetrical perfusion average reduction rate of the PCIVs was 52.25%, while the HCs reduction rate was 42.75%. CONCLUSION 3D-PCASL is a non-invasive and susceptible method for detecting hypoperfusion in PC, serving as a potential biomarker of PCIV. The suspected hypoperfusion in PC may be attributed to the emergence of FPCA and the manifestation of anterior collateral flow when combining t-ASL and MRA sequences. These findings demonstrated that 3D-PCASL combined with t-ASL and MRA sequences are the potential method to identify PCIV, leading to early diagnosis of PCIV and reducing the risk of progressing into infarction.
Collapse
Affiliation(s)
- Xiaotong Xie
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Lingjiang Mo
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Peifan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Chunxing Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Mouyuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Yongyan Deng
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Peina Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Jinglei Yuan
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Ting Song
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, Guangdong Province 510150, People's Republic of China.
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, No.19, Nong Lin Xia Road, Guangzhou, Guangdong Province 510030, People's Republic of China.
| |
Collapse
|
2
|
Differences in Ischemic Anterior and Posterior Circulation Strokes: A Clinico-Radiological and Outcome Analysis. J Stroke Cerebrovasc Dis 2018; 28:710-718. [PMID: 30501979 DOI: 10.1016/j.jstrokecerebrovasdis.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There are limited data comparing posterior (PC) and anterior (AC) circulation acute ischemic strokes (AIS). We aimed to identify specific features of PC and AC strokes regarding clinical, etiological, radiological, and outcome factors. METHODS Patients from the Acute STroke Registry and Analysis of Lausanne, a prospective cohort of consecutive AIS, from years 2003 to 2008 were included. The stroke territory was determined by a combination of neuroimaging and clinical symptoms. Patients with uncertain localization or with simultaneous AC and PC strokes were excluded. Multivariate associations between territory and multiple variables were investigated. RESULTS A total of 1449 patients were included, 466 (32.2%) had a PC territory stroke and 983 (67.8%) an AC. On multivariate analysis, those with PC AIS had lower National Institutes of Health Stroke Scale at admission, more often showed decreased consciousness, visual field defects, and vestibulo-cerebellar signs, but less hemisyndromes, dysarthria, and cognitive symptoms compared to AC AIS patients. Male sex, arterial dissection, lacunar mechanisms, and endovascular recanalization were more frequent in PC strokes, whereas cardioembolic strokes and IV-thrombolysis rates were lower. Less early ischemic signs on admission CT, overall arterial pathology, and 24-hour recanalization were present in PC strokes but intracranial arterial pathology was more prevalent than in AC. The adjusted clinical outcome at 3 months was similar in both groups. CONCLUSIONS In this large retrospective consecutive AIS series, there were specific differences in clinical presentation, etiology, and arterial pathology between PC and AC strokes which did not influence clinical outcome. These findings could lead to a tailored diagnostic work-up, acute treatment strategies, and secondary prevention.
Collapse
|
3
|
Abstract
Isolated vestibular syndrome may occur all along the vestibular pathways from the peripheral labyrinth to the brain. By virtue of recent developments in clinical neurotology and neuroimaging, however, diagnosis of isolated central vestibulopathy is increasing. Here, we review five distinct syndromes of isolated central vestibular syndrome from lesions restricted to the vestibular nuclei, the nucleus prepositus hypoglossi, the flocculus, the tonsil, and the nodulus, and introduce a new vestibular syndrome from isolated involvement of the inferior cerebellar peduncle. Decreased responses to head impulses do not exclude a central lesion as a cause of isolated vestibular syndrome. Brain imaging, including diffusion-weighted magnetic resonance imaging (MRI), may be falsely negative during the acute phase in patients with isolated vestibular syndrome because of a stroke. Central signs should be sought carefully in patients with isolated vertigo, even when the patients show the features of peripheral vestibulopathy and negative MRIs. Recognition of these isolated central vestibular syndromes would aid in defining the lesions responsible for various vestibular manifestations in central vestibulopathy.
Collapse
Affiliation(s)
- Sung-Hee Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | | | | | | |
Collapse
|
4
|
Lekic T, Krafft PR, Coats JS, Obenaus A, Tang J, Zhang JH. Infratentorial strokes for posterior circulation folks: clinical correlations for current translational therapeutics. Transl Stroke Res 2013; 2:144-51. [PMID: 23060944 DOI: 10.1007/s12975-011-0068-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Approximately 20 percent of all strokes will occur in the Infratentorial brain. This is within the vascular territory of the posterior vascular circulation. Very few clinical specifics are known about the therapeutic needs of this patient sub-population. Most evidence-based practices are founded from research about the treatment of anterior circulatory stroke. As a consequence, little is known about how stroke in the Infratentorial brain region would require a different approach. We characterized the neurovascular features of Infratentorial stroke, pathophysiological responses, and experimental models for further translational study.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, Calif
| | | | | | | | | | | |
Collapse
|
5
|
Lekic T, Rolland W, Manaenko A, Krafft PR, Kamper JE, Suzuki H, Hartman RE, Tang J, Zhang JH. Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg 2012. [PMID: 23198805 DOI: 10.3171/2012.10.jns111836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Primary pontine hemorrhage (PPH) represents approximately 7% of all intracerebral hemorrhages (ICHs) and is a clinical condition of which little is known. The aim of this study was to characterize the early brain injury, neurobehavioral outcome, and long-term histopathology in a novel preclinical rat model of PPH. METHODS The authors stereotactically infused collagenase (Type VII) into the ventral pontine tegmentum of the rats, in accordance with the most commonly affected clinical region. Measures of cerebrovascular permeability (brain water content, hemoglobin assay, Evans blue, collagen Type IV, ZO-1, and MMP-2 and MMP-9) and neurological deficit were quantified at 24 hours postinfusion (Experiment 1). Functional outcome was measured over a 30-day period using a vertebrobasilar scale (the modified Voetsch score), open field, wire suspension, beam balance, and inclined-plane tests (Experiment 2). Neurocognitive ability was determined at Week 3 using the rotarod (motor learning), T-maze (working memory), and water maze (spatial learning and memory) (Experiment 3), followed by histopathological analysis 1 week later (Experiment 4). RESULTS Stereotactic collagenase infusion caused dose-dependent elevations in hematoma volume, brain edema, neurological deficit, and blood-brain barrier rupture, while physiological variables remained stable. Functional outcomes mostly normalized by Week 3, whereas neurocognitive deficits paralleled the cystic cavitary lesion at 30 days. Obstructive hydrocephalus did not develop despite a clinically relevant 30-day mortality rate (approximately 54%). CONCLUSIONS These results suggest that the model can mimic several translational aspects of pontine hemorrhage in humans and can be used in the evaluation of potential preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology and Pharmacology, of Science and Technology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Posterior circulation stroke: animal models and mechanism of disease. J Biomed Biotechnol 2012; 2012:587590. [PMID: 22665986 PMCID: PMC3361739 DOI: 10.1155/2012/587590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 02/08/2023] Open
Abstract
Posterior circulation stroke refers to the vascular occlusion or bleeding, arising from the vertebrobasilar vasculature of the brain. Clinical studies show that individuals who experience posterior circulation stroke will develop significant brain injury, neurologic dysfunction, or death. Yet the therapeutic needs of this patient subpopulation remain largely unknown. Thus understanding the causative factors and the pathogenesis of brain damage is important, if posterior circulation stroke is to be prevented or treated. Appropriate animal models are necessary to achieve this understanding. This paper critically integrates the neurovascular and pathophysiological features gleaned from posterior circulation stroke animal models into clinical correlations.
Collapse
|
7
|
Abstract
PURPOSE OF THE REVIEW Physicians find acute vertigo a diagnostic challenge. This article review recent evidence outlining the clinical presentation of acute central and peripheral dizzy syndromes and suggest when clinicians may consider acute neuro-imaging. RECENT FINDINGS Recent evidence highlights the difficulty that acute vertigo may sometimes pose to the clinician. For example, migrainous vertigo may have oculomotor abnormalities suggestive of either central neurological or peripheral vestibular dysfunction. Furthermore, vertebrobasilar stroke syndromes may mimic peripheral disorders such as vestibular neuritis, or when there is hearing involvement may be misdiagnosed as Meniere's disease. In addition to the need for identifying serious conditions in acute vertigo, recent evidence suggests that early steroid treatment in vestibular neuritis may improve long term outcome. Further trials regarding symptomatic outcome are required, however, before routine use of steroids can be recommended in this condition. SUMMARY Recent findings have not made the assessment of acute vertigo any easier for the nonspecialist. Although the commonest vertigo syndromes are benign, serious conditions such as stroke may masquerade as a peripheral labyrinthine disorder and conversely benign conditions such as migrainous vertigo may have clinical characteristics of central disorders. These findings re-emphasize the need for a thorough clinical evaluation of the acutely dizzy patient.
Collapse
Affiliation(s)
- Barry M Seemungal
- Academic Department of Neuro-Otology, Division of Neuroscience and Mental Health, Imperial College London, Charing Cross Hospital, London, UK.
| |
Collapse
|