1
|
Wang F, Luo R, Zou CJ, Xie S, Peng K, Zhao L, Yang KT, Xu C, Yang T. Soluble (pro)renin receptor treats metabolic syndrome in mice with diet-induced obesity via interaction with PPARγ. JCI Insight 2020; 5:128061. [PMID: 32271168 PMCID: PMC7205274 DOI: 10.1172/jci.insight.128061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
The therapies available for management of obesity and associated conditions are limited, because they are often directed toward an individual component of metabolic syndrome and are associated with adverse effects. Here, we report the multifaceted therapeutic potential of histidine-tagged recombinant soluble (pro)renin receptor (sPRR), termed sPRR-His, in a mouse model of diet-induced obesity (DIO). In the DIO model, 2-week administration of sPRR-His lowered body weight and remarkably improved multiple metabolic parameters in the absence of fluid retention. Conversely, inhibition of endogenous sPRR production by PF429242 induced diabetes and insulin resistance, both of which were reversed by the sPRR-His supplement. At the cellular level, sPRR-His enhanced insulin-induced increases in glucose uptake via upregulation of phosphorylated AKT and protein abundance of glucose transporter 4. Promoter and gene expression analysis revealed PRR as a direct target gene of PPARγ. Adipocyte-specific PPARγ deletion induced severe diabetes and insulin resistance associated with reduced adipose PRR expression and circulating sPRR. The sPRR-His supplement in the null mice nearly normalized blood glucose and insulin levels. Additionally, sPRR-His treatment suppressed DIO-induced renal sodium-glucose cotransporter-2 (SGLT2) expression. Overall, sPRR-His exhibits a therapeutic potential in management of metabolic syndrome via interaction with PPARγ.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhao
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Blondrath K, Steel JH, Katsouri L, Ries M, Parker MG, Christian M, Sastre M. The nuclear cofactor receptor interacting protein-140 (RIP140) regulates the expression of genes involved in Aβ generation. Neurobiol Aging 2016; 47:180-191. [PMID: 27614112 DOI: 10.1016/j.neurobiolaging.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022]
Abstract
The receptor interacting protein-140 (RIP140) is a cofactor for several nuclear receptors and has been involved in the regulation of metabolic and inflammatory genes. We hypothesize that RIP140 may also affect Aβ generation because it modulates the activity of transcription factors previously implicated in amyloid precursor protein (APP) processing, such as peroxisome proliferator-activated receptor-γ (PPARγ). We found that the levels of RIP140 are reduced in Alzheimer's disease (AD) postmortem brains compared with healthy controls. In addition, in situ hybridization experiments revealed that RIP140 expression is enriched in the same brain areas involved in AD pathology, such as cortex and hippocampus. Furthermore, we provide evidence using cell lines and genetically modified mice that RIP140 is able to modulate the transcription of certain genes involved in AD pathology, such as β-APP cleaving enzyme (BACE1) and GSK3. Consequently, we found that RIP140 overexpression reduced the generation of Aβ in a neuroblastoma cell line by decreasing the transcription of β-APP cleaving enzyme via a PPARγ-dependent mechanism. The results of this study therefore provide molecular insights into common signaling pathways linking metabolic disease with AD.
Collapse
Affiliation(s)
- Katrin Blondrath
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jennifer H Steel
- Institute for Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Loukia Katsouri
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Miriam Ries
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Malcolm G Parker
- Institute for Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Mark Christian
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|