1
|
Gilron I, Xiao MZX, Carley M, Salter MW, Hutchinson MR, Moulin DE, Moore RA, Ross-White A. Glial-modulating agents for the treatment of pain: a systematic review. Pain 2025; 166:1030-1049. [PMID: 39432726 DOI: 10.1097/j.pain.0000000000003447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Preclinical research supports a critical role for nervous system glia in pain pathophysiology. This systematic review of human trials of potential glia-modulating drugs for the prevention or treatment of pain followed a predefined search strategy and protocol registration. We searched for English language, randomized, double-blind trials comparing putative glia-modulating drugs to placebo or other comparators. The primary outcomes included validated participant-reported measures of pain intensity or relief and, in studies of opioid administration, measures of opioid consumption and/or opioid-related adverse effects. Twenty-six trials (2132 participants) of glial modulators (12 minocycline, 11 pentoxifylline, and 3 ibudilast) were included. Because of clinical heterogeneity related to study drug, participant population, outcome measures, and trial design, no meta-analysis was possible. Only 6 trials reported a positive effect of the treatment (pentoxifylline-4 trials; minocycline-2 trials), whereas 11 trials reported mixed results and 9 trials reported no effect. This review does not provide convincing evidence of efficacy of current pharmacological targets of nervous system glial function for pain treatment or prevention. However, in light of ample preclinical evidence of the importance of neuroimmune signalling and glial functions in pain pathophysiology, continued strategic human research is anticipated to identify (1) drugs with maximal activity as selectively targeted glial modulators, (2) the necessary timing and duration of pharmacological glial modulation needed for pain prevention or treatment for specific injuries or pain conditions, and (3) the best design of future clinical trials of glial-targeted drugs for pain treatment and/or prevention.
Collapse
Affiliation(s)
- Ian Gilron
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Maggie Z X Xiao
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Meg Carley
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Michael W Salter
- Neurosciences and Mental Health Program, The Hospital for Sick Children, The University of Toronto Centre for the Study of Pain, The Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mark R Hutchinson
- Institute for Photonics and Advanced Sensing and the School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dwight E Moulin
- Departments of Clinical Neurological Sciences and Oncology, Western University, London, Canada
| | | | - Amanda Ross-White
- Bracken Health Sciences Library, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Butters D, Whitehouse M. Beyond conventional DMARDs: extending TNF-regulant therapies to the vast majority/less privileged who do need them. Int J Rheum Dis 2010; 12:299-306. [PMID: 20374366 DOI: 10.1111/j.1756-185x.2009.01427.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article is a plea to find (better) ways to extend the benefits of anti-cytokine therapies to ensure they will become available as widely as possible. Pessimistically, this will probably involve substituting more affordable, although somewhat less specific, non-biological agents for present target-specific bio-DMARDs (disease-modifying antirheumatic drugs) to ensure far wider distribution of benefits. Optimistically, new developments in technology and bio-engineering might dramatically reduce costs of present 'biological' therapies. (The antibiotics we now take for granted were once also horrendously expensive.). Pragmatically, one goal for this mission should include seriously pursuing more research and pilot clinical trials of non-protein combination therapies able to control: (i) TNF or other pro-inflammatory cytokines; and also (ii) other mediators sustaining chronic inflammation (-->pain, effusion, fibrosis, porosis, etc.). This can be immediately facilitated by drawing upon the immense resources of non-prescription Asia-Pacific traditional therapies--particularly when these have already been shown to either reduce TNF synthesis or control TNF-induced responses in preclinical studies. Could this be a major goal for the next decade, helping rectify some of the omissions of the current Bone & Joint Decade 2000-2010?
Collapse
Affiliation(s)
- Desley Butters
- Therapeutics Research Unit, Department of Medicine, Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | | |
Collapse
|