1
|
O'Donnell KL, Marzi A. Immunotherapeutics for Ebola Virus Disease: Hope on the Horizon. Biologics 2021; 15:79-86. [PMID: 33776420 PMCID: PMC7987275 DOI: 10.2147/btt.s259069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
Ebola virus disease (EVD) remains among the biggest public health threats in Africa, even though recently a vaccine was approved for human use. However, in outbreak situations treatment strategies are needed in combination with vaccination campaigns to impact and stop the spread of the disease. Here, we discuss the development of the immunotherapeutics against EDV both targeting the virus itself and bolstering the immunological environment of the host at both the pre-clinical and clinical level. The early development of antibody therapy in preclinical settings and the early pitfalls in the implementation of this therapeutic strategy are discussed. We also consider the advancement of the production, modulation, and specificity of the antibody treatment that garnered increased success in preclinical studies to the point that it was warranted to test them in a clinical setting. Initial clinical trials in an outbreak scenario proved difficult to definitively confirm the efficacy of the implemented treatment. Upon further modification and with the experiences from the challenging outbreak conditions in mind, the PALM clinical trial demonstrated efficacy of an antibody cocktail which recently received approval for human use.
Collapse
Affiliation(s)
- Kyle L O'Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
2
|
Guthals A, Gan Y, Murray L, Chen Y, Stinson J, Nakamura G, Lill JR, Sandoval W, Bandeira N. De Novo MS/MS Sequencing of Native Human Antibodies. J Proteome Res 2016; 16:45-54. [PMID: 27779884 DOI: 10.1021/acs.jproteome.6b00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One direct route for the discovery of therapeutic human monoclonal antibodies (mAbs) involves the isolation of peripheral B cells from survivors/sero-positive individuals after exposure to an infectious reagent or disease etiology, followed by single-cell sequencing or hybridoma generation. Peripheral B cells, however, are not always easy to obtain and represent only a small percentage of the total B-cell population across all bodily tissues. Although it has been demonstrated that tandem mass spectrometry (MS/MS) techniques can interrogate the full polyclonal antibody (pAb) response to an antigen in vivo, all current approaches identify MS/MS spectra against databases derived from genetic sequencing of B cells from the same patient. In this proof-of-concept study, we demonstrate the feasibility of a novel MS/MS antibody discovery approach in which only serum antibodies are required without the need for sequencing of genetic material. Peripheral pAbs from a cytomegalovirus-exposed individual were purified by glycoprotein B antigen affinity and de novo sequenced from MS/MS data. Purely MS-derived mAbs were then manufactured in mammalian cells to validate potency via antigen-binding ELISA. Interestingly, we found that these mAbs accounted for 1 to 2% of total donor IgG but were not detected in parallel sequencing of memory B cells from the same patient.
Collapse
Affiliation(s)
- Adrian Guthals
- Mapp Biopharmaceutical, Inc. , 6160 Lusk Boulevard #C105, San Diego, California 92121, United States
| | - Yutian Gan
- Department of Proteomics & Biological Resources, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Laura Murray
- Department of Protein Chemistry, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Yongmei Chen
- Department of Antibody Engineering, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Jeremy Stinson
- Department of Molecular Biology, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Jennie R Lill
- Department of Proteomics & Biological Resources, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department of Proteomics & Biological Resources, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego , 9500 Gilman Drive, Mail Code 0404, La Jolla, California 92093, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, Mail Code 0657, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Zeitlin L, Whaley KJ, Olinger GG, Jacobs M, Gopal R, Qiu X, Kobinger GP. Antibody therapeutics for Ebola virus disease. Curr Opin Virol 2016; 17:45-49. [PMID: 26826442 DOI: 10.1016/j.coviro.2016.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
With the unprecedented scale of the 2014-2016 West Africa outbreak, the clinical and scientific community scrambled to identify potential therapeutics for Ebola virus disease (EVD). Passive administration of antibodies has a long successful history for prophylaxis and therapy of a variety of infectious diseases, but the importance of antibodies in EVD has been unclear and is the subject of some debate. Recent studies in non-human primates have renewed interest in the potential of antibodies to impact EVD. Currently ongoing clinical evaluation of polyclonal and monoclonal antibody therapy in EVD patients in West Africa may finally offer a definitive answer to this debate.
Collapse
Affiliation(s)
- Larry Zeitlin
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd #C105, San Diego, CA 92121, USA.
| | - Kevin J Whaley
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd #C105, San Diego, CA 92121, USA
| | - Gene G Olinger
- Integrated Research Facility, 8200 Research Plaza Frederick, MD 21702, USA
| | - Michael Jacobs
- Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, United Kingdom
| | - Robin Gopal
- High Containment Microbiology Department, National Infections Service, Public Health England, 61 Colindale Avenue, London NW9 5HT, United Kingdom
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Gary P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Immunology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
4
|
Abstract
Effective characterization of protein-based therapeutic candidates such as monoclonal antibodies (mAbs) is important to facilitate their successful progression from early discovery and development stages to marketing approval. One challenge relevant to biopharmaceutical development is, understanding how the stability of a protein is affected by the presence of an attached oligosaccharide, termed a glycan. To explore the utility of molecular dynamics simulations as a complementary technique to currently available experimental methods, the Fc fragment was employed as a model system to improve our understanding of protein stabilization by glycan attachment. Long molecular dynamics simulations were performed on three Fc glycoform variants modeled using the crystal structure of a human IgG1 mAb. Two of these three glycoform variants have their glycan carbohydrates partially or completely removed. Structural differences among the glycoform variants during simulations suggest that glycan truncation and/or removal can cause quaternary structural deformation of the Fc as a result of the loss or disruption of a significant number of inter-glycan contacts that are not formed in the human IgG1 crystal structure, but do form during simulations described here. Glycan truncation/removal can also increase the tertiary structural deformation of CH2 domains, demonstrating the importance of specific carbohydrates toward stabilizing individual CH2 domains. At elevated temperatures, glycan truncation can also differentially affect structural deformation in locations (Helix-1 and Helix-2) that are far from the oligosaccharide attachment point. Deformation of these helices, which form part of the FcRn, could affect binding if these regions are unable to refold after temperature normalization. During elevated temperature simulations of the deglycosylated variant, CH2 domains collapsed onto CH3 domains. Observations from these glycan truncation/removal simulations have improved our understanding on how glycan composition can affect mAb stability.
Collapse
Affiliation(s)
- Patrick M Buck
- Pharmaceutical Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Chesterfield, MO USA
| | - Sandeep Kumar
- Pharmaceutical Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Chesterfield, MO USA
| | - Satish K Singh
- Pharmaceutical Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Chesterfield, MO USA
| |
Collapse
|
5
|
Baykov IK, Matveev AL, Stronin OV, Ryzhikov AB, Matveev LE, Kasakin MF, Richter VA, Tikunova NV. A protective chimeric antibody to tick-borne encephalitis virus. Vaccine 2014; 32:3589-94. [DOI: 10.1016/j.vaccine.2014.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/30/2022]
|
6
|
Hristodorov D, Fischer R, Joerissen H, Müller-Tiemann B, Apeler H, Linden L. Generation and comparative characterization of glycosylated and aglycosylated human IgG1 antibodies. Mol Biotechnol 2013; 53:326-35. [PMID: 22427250 DOI: 10.1007/s12033-012-9531-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals reflecting their diverse applications in research and the clinic. The correct glycosylation of mAbs is required to elicit effector functions such as complement-dependent and antibody-dependent cell-mediated cytotoxicity, although these may be undesirable for the treatment of certain chronic diseases. To gain insight into the properties of glycan-deficient mAbs, we generated and characterized six different aglycosylated human IgG1 mAbs (carrying the N297A mutation) and compared them to their glycosylated counterparts. We found no differences in solubility or heterogeneity, and all mAbs the remained stable in stress tests at 4 and 37 °C. Surface plasmon resonance spectroscopy showed no differences in binding affinity, and the in vivo terminal serum half-life and plasma clearance were similar in rats. However, differential scanning calorimetry revealed that the aglycosylated mAbs contained a less stable C(H)2 domain and they were also significantly more susceptible to pH-induced aggregation. We conclude that aglycosylated mAbs are functionally equivalent to their glycosylated counterparts and could be particularly suitable for certain therapeutic applications, such as the treatment of chronic diseases.
Collapse
Affiliation(s)
- Dmitrij Hristodorov
- GDD-GB-BRG-Cell & Protein Science, Purification & Research Analytics, Bayer Healthcare AG, Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Wang B, Gucinski AC, Keire DA, Buhse LF, Boyne II MT. Structural comparison of two anti-CD20 monoclonal antibody drug products using middle-down mass spectrometry. Analyst 2013; 138:3058-65. [DOI: 10.1039/c3an36524g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Long-lasting protective antiviral immunity induced by passive immunotherapies requires both neutralizing and effector functions of the administered monoclonal antibody. J Virol 2010; 84:10169-81. [PMID: 20610721 DOI: 10.1128/jvi.00568-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Using FrCas(E) retrovirus-infected newborn mice as a model system, we have shown recently that a long-lasting antiviral immune response essential for healthy survival emerges after a short treatment with a neutralizing (667) IgG2a isotype monoclonal antibody (MAb). This suggested that the mobilization of adaptive immunity by administered MAbs is key for the success in the long term for the MAb-based passive immunotherapy of chronic viral infections. We have addressed here whether the anti-FrCas(E) protective endogenous immunity is the mere consequence of viral propagation blunting, which would simply give time to the immune system to react, and/or to actual immunomodulation by the MAb during the treatment. To this aim, we have compared viral replication, disease progression, and antiviral immune responses between different groups of infected mice: (i) mice treated with either the 667 MAb, its F(ab')(2) fragment, or an IgM (672) with epitopic specificity similar to that of 667 but displaying different effector functions, and (ii) mice receiving no treatment but infected with a low viral inoculum reproducing the initial viral expansion observed in their infected/667 MAb-treated counterparts. Our data show that the reduction of FrCas(E) propagation is insufficient on its own to induce protective immunity and support a direct immunomodulatory action of the 667 MAb. Interestingly, they also point to sequential actions of the administered MAb. In a first step, viral propagation is exclusively controlled by 667 neutralizing activity, and in a second one, this action is complemented by FcgammaR-binding-dependent mechanisms, which most likely combine infected cell cytolysis and the modulation of the antiviral endogenous immune response. Such complementary effects of administered MAbs must be taken into consideration for the improvement of future antiviral MAb-based immunotherapies.
Collapse
|
9
|
Flad HD, Brandt E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 2010; 67:2363-86. [PMID: 20213276 PMCID: PMC11115602 DOI: 10.1007/s00018-010-0306-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/28/2010] [Accepted: 02/05/2010] [Indexed: 02/05/2023]
Abstract
The identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity. However, insight is growing that platelet chemokines may be also long-term regulators, e.g., by activating T lymphocytes, by modulating the formation of endothelium and even thrombocytopoiesis itself. This review deals with the individual and cooperative functionality of platelet chemokines, as well as their potential as a basis for therapeutic intervention in the pathology of inflammation, infection, allergy and tumors. Within this context, therapeutic strategies based on the use of antibodies, modified chemokines, chemokine-binding proteins and chemokine receptor antagonists as well as first clinical studies will be addressed.
Collapse
Affiliation(s)
- Hans-Dieter Flad
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany.
| | | |
Collapse
|
10
|
A crucial role for infected-cell/antibody immune complexes in the enhancement of endogenous antiviral immunity by short passive immunotherapy. PLoS Pathog 2010; 6:e1000948. [PMID: 20548955 PMCID: PMC2883599 DOI: 10.1371/journal.ppat.1000948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 05/10/2010] [Indexed: 01/06/2023] Open
Abstract
Antiviral monoclonal antibodies (mAbs) represent promising therapeutics. However, most mAbs-based immunotherapies conducted so far have only considered the blunting of viral propagation and not other possible therapeutic effects independent of virus neutralization, namely the modulation of the endogenous immune response. As induction of long-term antiviral immunity still remains a paramount challenge for treating chronic infections, we have asked here whether neutralizing mAbs can, in addition to blunting viral propagation, exert immunomodulatory effects with protective outcomes. Supporting this idea, we report here that mice infected with the FrCasE murine retrovirus on day 8 after birth die of leukemia within 4–5 months and mount a non-protective immune response, whereas those rapidly subjected to short immunotherapy with a neutralizing mAb survive healthy and mount a long-lasting protective antiviral immunity with strong humoral and cellular immune responses. Interestingly, the administered mAb mediates lysis of infected cells through an antibody-dependent cell cytotoxicity (ADCC) mechanism. In addition, it forms immune complexes (ICs) with infected cells that enhance antiviral CTL responses through FcγR-mediated binding to dendritic cells (DCs). Importantly, the endogenous antiviral antibodies generated in mAb-treated mice also display the same properties, allowing containment of viral propagation and enhancement of memory cellular responses after disappearance of the administered mAb. Thus, our data demonstrate that neutralizing antiviral mAbs can act as immunomodulatory agents capable of stimulating a protective immunity lasting long after the end of the treatment. They also show an important role of infected-cells/antibody complexes in the induction and the maintenance of protective immunity through enhancement of both primary and memory antiviral T-cell responses. They also indicate that targeting infected cells, and not just viruses, by antibodies can be crucial for elicitation of efficient, long-lasting antiviral T-cell responses. This must be considered when designing antiviral mAb-based immunotherapies. Monoclonal antibodies (mAbs) constitute the largest class of bio-therapeutic proteins and are increasingly being considered as drugs to fight both acute and chronic severe human viral diseases. Most antiviral mAb-based treatments conducted so far, whether in humans or in animal models, have only considered the blunting of viral propagation through direct virus neutralization. However, mAbs might also operate via complementary mechanisms owing to their ability to interact with various components of the immune system. Using a lethal mouse model of retrovirally-induced leukemia, we report here that a neutralizing mAb administered to infected mice for a short period of time can, in addition to its direct effect on viral spread, induce a strong, long-lasting antiviral immune response protecting mice from disease development long after the end of the treatment. Although the initiation and maintenance of this long-term immunity is multi-factorial, we demonstrate a crucial role for the immune complexes formed between antiviral antibodies and infected cells in this process. Our work reveals a thus far underappreciated vaccine-like effect of antiviral neutralizing mAbs, which will have to be considered for future treatment of life-threatening viral infections.
Collapse
|
11
|
Klinguer-Hamour C, Caussanel V, Beck A. [Monoclonal antibodies for treating infectious diseases]. Med Sci (Paris) 2010; 25:1116-20. [PMID: 20035689 DOI: 10.1051/medsci/200925121116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibodies (mAb) are attractive biologic drugs because of their specificity and well understood mechanisms of action. So far, most mAb have been developed for treating cancers or immunological disorders. However, the antibiotic resistance crisis, emerging viral diseases and bioterrorism have increased the development of anti-infectious mAb, for which more than twenty clinical trials are in progress to evaluate their safety and efficacy. The synergies obtained using combinations of anti-infectious mAb and small molecule drugs will certainly offer new opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Christine Klinguer-Hamour
- Centre d'immunologie Pierre Fabre, 5, avenue Napoléon III, BP 60497, 74160 Saint-Julien en Genevois, France.
| | | | | |
Collapse
|
12
|
Multicomponent chemical enhancer formulations for transdermal drug delivery: More is not always better. J Control Release 2010; 144:175-80. [DOI: 10.1016/j.jconrel.2010.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 11/22/2022]
|
13
|
Biot J, Fasano C, Dos Santos C. [From orthoclone to denosumab, the fast growing market of monoclonal antibodies]. Med Sci (Paris) 2009; 25:1177-82. [PMID: 20035702 DOI: 10.1051/medsci/200925121177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Monoclonal antibodies are a specific medicinal category within the current therapeutic armamentarium. Their market share is growing fast as they are often the only therapeutic option at some stages of certain diseases, due to their targeted action in the body and to an acceptable tolerance. The budget impact of monoclonal antibodies is increasing, leading payers and health authorities to growing attention and pressure when they have to decide on the reimbursement, coverage and pricing of these products. The launch of biosimilars after patent expiry of some of these drugs will take time in view of the complexity of these molecules, and is not likely to significantly impact the cost of these therapies.
Collapse
Affiliation(s)
- Jacques Biot
- JNB Développement, 6 rue du Général de Larminat, 75015 Paris, France.
| | | | | |
Collapse
|
14
|
Chapman K, Pullen N, Coney L, Dempster M, Andrews L, Bajramovic J, Baldrick P, Buckley L, Jacobs A, Hale G, Green C, Ragan I, Robinson V. Preclinical development of monoclonal antibodies: considerations for the use of non-human primates. MAbs 2009; 1:505-16. [PMID: 20065651 DOI: 10.4161/mabs.1.5.9676] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of mAbs remains high on the therapeutic agenda for the majority of pharmaceutical and biotechnology companies. Often, the only relevant species for preclinical safety assessment of mAbs are non-human primates (NHPs), and this raises important scientific, ethical and economic issues. To investigate evidence-based opportunities to minimize the use of NHPs, an expert working group with representatives from leading pharmaceutical and biotechnology companies, contract research organizations and institutes from Europe and the USA, has shared and analyzed data on mAbs for a range of therapeutic areas. This information has been applied to hypothetical examples to recommend scientifically appropriate development pathways and study designs for a variety of potential mAbs. The addendum of ICHS6 provides a timely opportunity for the scientific and regulatory community to embrace strategies which minimize primate use and increase efficiency of mAb development.
Collapse
Affiliation(s)
- Kathryn Chapman
- National Centre for Replacement, Refinement and Reduction of Animals in Research, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mir HM, Birerdinc A, Younossi ZM. Monoclonal and polyclonal antibodies against the HCV envelope proteins. Clin Liver Dis 2009; 13:477-86. [PMID: 19628163 DOI: 10.1016/j.cld.2009.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The potential for developing efficient and efficacious therapies for hepatitis C virus continues to improve. Insight into the molecular processes involved in attachment, entry, and fusion suggests that antibodies could potentially inhibit viral replication at any or all of these stages, and the attachment and entry stages present the best target for antibodies that can attack the virus. Monoclonal and polyclonal antibodies present an important therapeutic option in this area, and this article assesses current investigations of several antibodies.
Collapse
Affiliation(s)
- Heshaam M Mir
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | | | | |
Collapse
|
16
|
Cohen J, Wilson A. New challenges to medicare beneficiary access to mAbs. MAbs 2009; 1:56-66. [PMID: 20046575 PMCID: PMC2715185 DOI: 10.4161/mabs.1.1.7246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 11/19/2022] Open
Abstract
Precision binding of monoclonal antibodies (mAbs) to biological targets, their relative clinical success, and expansion of indications following initial approval, are distinctive clinical features. The relatively high cost of mAbs, together with the absence of a regulatory pathway to generics, stand out as distinctive economic features. Based on both literature review and primary data collection we enumerated mAb original approvals, supplemental indications and off-label uses, assessed payer formulary management of mAbs, and determined new challenges to Medicare beneficiary access to mAbs. We found that the FDA has approved 22 mAbs and 30 supplemental indications pertaining to the originally approved mAbs. In addition, there are 46 off-label use citations in officially recognized pharmaceutical compendia. Across Part B carriers and Part D plans, we found considerable variation in terms of coverage and conditions of reimbursement related to on- and off-label uses of mAbs. Our results point to four major challenges facing mAb developers, health care providers, Medicare beneficiaries, payers and policymakers. These include administrative price controls, coverage variation, projected shift from physician- to self-administered mAbs, and comparative effectiveness. We suggest more systematic use of "coverage with evidence development" as a means of optimally addressing these challenges.
Collapse
Affiliation(s)
- Joshua Cohen
- Tufts Center for the Study of Drug Development (CSDD), Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
17
|
Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 2008; 25:1421-34. [PMID: 18066039 PMCID: PMC7097443 DOI: 10.1038/nbt1363] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies (mAbs) have long provided powerful research tools for virologists to understand the mechanisms of virus entry into host cells and of antiviral immunity. Even so, commercial development of human (or humanized) mAbs for the prophylaxis, preemptive and acute treatment of viral infections has been slow. This is surprising, as new antibody discovery tools have increased the speed and precision with which potent neutralizing human antiviral mAbs can be identified. As longstanding barriers to antiviral mAb development, such as antigenic variability of circulating viral strains and the ability of viruses to undergo neutralization escape, are being overcome, deeper insight into the mechanisms of mAb action and engineering of effector functions are also improving the efficacy of antiviral mAbs. These successes, in both industrial and academic laboratories, coupled with ongoing changes in the biomedical and regulatory environments, herald an era when the commercial development of human antiviral mAb therapies will likely surge.
Collapse
Affiliation(s)
- Wayne A Marasco
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School 44, Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol 2007; 18:523-8. [PMID: 18063358 PMCID: PMC7127177 DOI: 10.1016/j.copbio.2007.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 10/22/2007] [Indexed: 12/11/2022]
Abstract
The administration of hyper immune sera to prevent or treat life-threatening infections is a remarkable milestone in medicine and biotechnology that has been achieved more than a century ago. Yet, the therapeutic use of monoclonal antibodies in this field has developed slowly over the last decades. Here we compare and contrast current methods to generate human monoclonal antibodies and highlight the advantages of exploiting the human antibody repertoire using a novel method that allows efficient immortalization and cloning of human memory B cells. This method, which has been successfully applied to isolate broadly neutralizing antibodies against SARS and H5N1 influenza viruses, is expected to accelerate the development of therapeutics in the field of infectious diseases not only by providing neutralizing antibodies for passive serotherapy, but also by generating relevant information for vaccine design.
Collapse
Affiliation(s)
- Antonio Lanzavecchia
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland.
| | | | | |
Collapse
|
19
|
ter Meulen J. Monoclonal antibodies for prophylaxis and therapy of infectious diseases. Expert Opin Emerg Drugs 2007; 12:525-40. [PMID: 17979597 DOI: 10.1517/14728214.12.4.525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Monoclonal antibodies (mAb) are attractive biologic drugs due to their exquisite specificity and well understood mechanisms of action, which results in a higher predictability and lower attrition rate compared with other drugs. Therefore, it may seem surprising that only a single mAb is presently marketed for an infectious disease indication. However, the antibiotic resistance crisis, emerging viral diseases and bioterroristic threats have recently spurred the development of anti-infective mAbs, of which more than a dozen are being tested in clinical trials. Conceptually, and validated in many preclinical models, mAbs will be most effective when used prophylactically against acute viral infections and bacterial toxins. The acute bacterial and chronic viral infections, which are medically and economically far more important, are much more difficult to control by antibodies, as the recent clinical failure of some polyclonal antibody products has shown. In these situations, the synergistic action of two or more mAbs together with a small molecule drug will most likely be required for therapeutic efficacy. This review aims to highlight the scientific and economic opportunities and obstacles that are encountered in the quest to add mAbs to the armament of anti-infective drugs.
Collapse
Affiliation(s)
- Jan ter Meulen
- Infectious Diseases, Crucell Holland BV, P.O. Box 2048, 2301, CA Leiden, The Netherlands.
| |
Collapse
|
20
|
Endogenous cytotoxic T-cell response contributes to the long-term antiretroviral protection induced by a short period of antibody-based immunotherapy of neonatally infected mice. J Virol 2007; 82:1339-49. [PMID: 18032505 DOI: 10.1128/jvi.01970-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neutralizing monoclonal antibodies (MAbs) are increasingly being considered for blunting human viral infections. However, whether they can also exert indirect effects on endogenous antiviral immune responses has been essentially overlooked. We have recently shown that a short (several-day) period of immunotherapy with the neutralizing 667 MAb of mouse neonates shortly after infection with the lethal FrCas(E) retrovirus not only has an immediate effect on the viral load but also permits an endogenous antiviral immunity to emerge. Even though passive immunotherapy was administered during the particular period of immunocompetence acquisition, the endogenous response eventually arising was protective and persisted long (>1 year) after the MAb has disappeared. As very high levels of anti-FrCas(E) antibodies, predominantly of the immunoglobulin G2a (IgG2a) isotype and showing strong neutralization activity, were found in the sera of MAb-treated mice, it was necessary to address whether this humoral immunity was sufficient on its own to confer full protection against FrCas(E) or whether a cytotoxic T-lymphocyte (CTL) response was also necessary. Using a variety of in vivo assays in young and adult animals previously infected by FrCas(E) and treated by 667, we show here that transient 667 immunotherapy is associated with the emergence of a CTL response against virus-infected cells. This cytotoxic activity is indispensable for long-term antiviral protective immunity, as high neutralizing antibody titers, even enhanced in in vivo CD8(+) cell depletion experiments, cannot prevent the FrCas(E)-induced death of infected/treated mice. Our work may have important therapeutic consequences, as it indicates that a short period of MAb-based immunotherapy conducted at a stage where the immune system is still developing can be associated with the mounting of a functional Th1-type immune response characterized by both CTL and IgG2a-type humoral contributions, the cooperation of which is known to be essential for the containment of chronic infections by a variety of viruses.
Collapse
|