1
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
2
|
Hussain M, Zhou Y, Song Y, Hameed HMA, Jiang H, Tu Y, Zhang J. ATAD2 in cancer: a pharmacologically challenging but tractable target. Expert Opin Ther Targets 2017; 22:85-96. [PMID: 29148850 DOI: 10.1080/14728222.2018.1406921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION ATAD2 protein is an emerging oncogene that has strongly been linked to the etiology of multiple advanced human cancers. Therapeutically, despite the fact that genetic suppression/knockdown studies have validated it as a compelling drug target for future therapeutic development, recent druggability assessment data suggest that direct targeting of ATAD2's bromodomain (BRD) may be a very challenging task. ATAD2's BRD has been predicted as a 'difficult to drug' or 'least druggable' target due to the concern that its binding pocket, and the areas around it, seem to be unfeasible for ligand binding. Areas covered: In this review, after shedding light on the multifaceted roles of ATAD2 in normal physiology as well as in cancer-etiology, we discuss technical challenges rendered by ATAD2's BRD active site and the recent drug discovery efforts to find small molecule inhibitors against it. Expert opinion: The identification of a novel low-nanomolar semi-permeable chemical probe against ATAD2's BRD by recent drug discovery campaign has demonstrated it to be a pharmacologically tractable target. Nevertheless, the development of high quality bioavailable inhibitors against ATAD2 is still a pending task. Moreover, ATAD2 may also potentially be utilized as a promising target for future development of RNAi-based therapy to treat cancers.
Collapse
Affiliation(s)
- Muzammal Hussain
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Yang Zhou
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Yu Song
- e Basic Medical College of Beihua University , Jilin , China
| | - H M Adnan Hameed
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Hao Jiang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| | - Yaoquan Tu
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Jiancun Zhang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| |
Collapse
|
3
|
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27:254-71. [PMID: 23885265 PMCID: PMC3721034 DOI: 10.7555/jbr.27.20130030] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy.
Collapse
Affiliation(s)
- Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
4
|
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2012; 65:157-70. [DOI: 10.1111/j.2042-7158.2012.01567.x] [Citation(s) in RCA: 1531] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
The frontline drug doxorubicin has been used for treating cancer for over 30 years. While providing a cure in select cases, doxorubicin causes toxicity to most major organs, especially life-threatening cardiotoxicity, which forces the treatment to become dose-limiting.
Key findings
Doxorubicin is known to bind to DNA-associated enzymes, intercalate with DNA base pairs, and target multiple molecular targets to produce a range of cytotoxic effects. For instance, it causes the activation of various molecular signals from AMPK (AMP-activated protein kinase inducing apoptosis) to influence the Bcl-2/Bax apoptosis pathway. By altering the Bcl-2/Bax ratio, downstream activation of different caspases can occur resulting in apoptosis. Doxorubicin also induces apoptosis and necrosis in healthy tissue causing toxicity in the brain, liver, kidney and heart. Over the years, many studies have been conducted to devise a drug delivery system that would eliminate these adverse affects including liposomes, hydrogel and nanoparticulate systems, and we highlight the pros and cons of these drug delivery systems.
Summary
Overall the future for the continued use of doxorubicin clinically against cancer looks set to be prolonged, provided certain enhancements as listed above are made to its chemistry, delivery and toxicity. Increased efficacy depends on these three aims being met satisfactorily as discussed in turn in this review.
Collapse
Affiliation(s)
- Oktay Tacar
- School of Biomedical and Health Sciences, Victoria University, St Albans, Australia
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Silpakorn University, Nakhon Pathom, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Crispin R Dass
- School of Biomedical and Health Sciences, Victoria University, St Albans, Australia
| |
Collapse
|
5
|
Lu D, Wu Y, Wang Y, Ren F, Wang D, Su F, Zhang Y, Yang X, Jin G, Hao X, He D, Zhai Y, Irwin DM, Hu J, Sung JJY, Yu J, Jia B, Chang Z. CREPT accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes. Cancer Cell 2012; 21:92-104. [PMID: 22264791 DOI: 10.1016/j.ccr.2011.12.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/17/2011] [Accepted: 12/16/2011] [Indexed: 12/14/2022]
Abstract
Tumorigenesis is caused by an uncontrolled cell cycle and the altered expression of many genes. Here, we report a gene CREPT that is preferentially expressed in diverse human tumors. Overexpression of CREPT accelerates tumor growth, whereas depletion of CREPT demonstrates a reversed effect. CREPT regulates cyclin D1 expression by binding to its promoter, enhancing its transcription both in vivo and in vitro, and interacting with RNA polymerase II (RNAPII). Interestingly, CREPT promotes the formation of a chromatin loop and prevents RNAPII from reading through the 3' end termination site of the gene. Our findings reveal a mechanism where CREPT increases cyclin D1 transcription during tumorigenesis, through enhancing the recruitment of RNAPII to the promoter region, possibly, as well as chromatin looping.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Geng CD, Vedeckis WV. Use of recombinant cell-permeable small peptides to modulate glucocorticoid sensitivity of acute lymphoblastic leukemia cells. Biochemistry 2010; 49:8892-901. [PMID: 20831260 DOI: 10.1021/bi1007723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucocorticoid (GC) hormones induce apoptosis in T-cell and pre-B-cell acute lymphoblastic leukemia (ALL) cells. Steroid-mediated apoptosis requires a threshold level of the glucocorticoid receptor (GR) protein, and increasing the intracellular GR levels in ALL cells would augment their hormone sensitivity. A protein transduction domain (PTD) approach was used to accomplish this. We produced an HIV Tat PTD domain fusion protein (Tat-GR(554-777)) that potentially competes for the degradation of GR protein by the ubiquitin-proteasome system and should thus increase its intracellular levels by "stabilizing" the GR. We also designed a fusion peptide for the c-Myb DNA binding domain, Tat-c-Myb DBD, since the biological function of this peptide as a dominant negative inhibitor of the c-Myb protein was already known. Purified, bacterially expressed Tat-c-Myb DBD and Tat-GR(554-777) exhibited highly efficient transduction into cultured ALL cell lines including 697 (pre-B-ALL) and CEM-C7 (T-ALL) cells. As expected, the transduced Tat-c-Myb DBD peptide inhibited steroid-mediated stimulation of a GR promoter-luciferase reporter gene. Significantly, transduced Tat-GR(554-777) effectively increased intracellular GR levels in the GC-resistant T-ALL cell line, CEM-C1, and in the pre-B-ALL 697 cell line. Furthermore, transduction of Tat-GR(554-777) rendered GC-resistant CEM-C1 cells sensitive to steroid killing and further sensitized 697 cells to steroid. The use of Tat-fusion peptide transduction may eventually lead to innovative therapeutic modalities to improve the clinical response of patients suffering from T-cell and pre-B-cell acute lymphoblastic leukemia by increasing steroid responsiveness and perhaps converting steroid-resistant leukemia to a hormone-responsive phenotype.
Collapse
Affiliation(s)
- Chuan-dong Geng
- Department of Biochemistry and Molecular Biology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
7
|
Rayburn ER, Ezell SJ, Zhang R. Recent advances in validating MDM2 as a cancer target. Anticancer Agents Med Chem 2009; 9:882-903. [PMID: 19538162 PMCID: PMC6728151 DOI: 10.2174/187152009789124628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/14/2008] [Indexed: 12/26/2022]
Abstract
The MDM2 oncogene is overexpressed in various human cancers. Its expression correlates with the phenotypes of high-grade, late-stage, and more resistant tumors. The auto-regulatory loop between MDM2 and the tumor suppressor p53 has long been considered the epitome of a rational target for cancer therapy. As such, many novel agents have been generated to interfere with the interaction of the two proteins, which results in the activation of p53. Among these agents are several small molecule inhibitors synthesized based upon the crystal structures of the MDM2-p53 complex. With use of high-throughput screening, several specific and effective agents for inhibition of the protein-protein interaction were discovered. Recent investigations, however, have demonstrated that many proteins regulate the MDM2-p53 interaction, and that MDM2 may have p53-independent oncogenic functions. In order for novel MDM2 inhibitors to be translated to the clinic, it is necessary to obtain a better understanding of the regulation of MDM2 and of the MDM2-p53 interaction. In particular, the implications of various interactions between certain regulator(s) and MDM2/p53 under different circumstances need to be elucidated to determine which pathway(s) represent the best targets for therapy. Targeting both MDM2 itself and regulators of MDM2 and the MDM2-p53 interaction, or use of MDM2 inhibitors in combination with conventional treatments, may improve prospects for tumor eradication.
Collapse
Affiliation(s)
- Elizabeth R. Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Scharri J. Ezell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| |
Collapse
|
8
|
Sood AK, Saxena R, Groth J, Desouki MM, Cheewakriangkrai C, Rodabaugh KJ, Kasyapa CS, Geradts J. Expression characteristics of prostate-derived Ets factor support a role in breast and prostate cancer progression. Hum Pathol 2007; 38:1628-38. [PMID: 17521701 PMCID: PMC2121591 DOI: 10.1016/j.humpath.2007.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to understand the characteristics of prostate-derived Ets factor (PDEF) protein expression in breast and prostate cancer progression. A polyclonal antibody specific to PDEF was raised and reacted with tissue microarrays consisting of benign breast, in situ ductal, invasive ductal, and invasive lobular breast carcinomas. The antibody was also reacted with tissue microarrays, including benign prostate, prostate intraepithelial neoplasias (PINs), and prostate carcinomas. Increased expression of PDEF was identified in 18%, 50%, 46%, and 51% of benign breast tissues, intraductal, invasive ductal, and invasive lobular carcinomas, respectively. Importantly, in matched samples of benign breast vs tumor, 90% showed higher expression of PDEF in the tumor tissue. Moreover, in invasive breast carcinomas, increased PDEF expression tended to correlate with Her2/neu overexpression. Increased expression of PDEF was also found in 27%, 33%, and 40% of benign prostate tissues, PIN samples, and prostate adenocarcinomas, respectively. Again, in matching samples of cancer vs benign and cancer vs PIN, 68% and 70%, respectively, showed increased expression in the malignant tissue. Moreover, PDEF was found to be more highly expressed in tumors with intermediate or high Gleason score compared with low-grade tumors (P < .01). In addition, R1881 treatment induced PDEF expression in the LNCaP prostate tumor cell line, suggesting regulation of PDEF by androgens in vivo. Together, these results for the first time show frequent increased expression of PDEF protein in breast and prostate tumors and support a role for PDEF in breast and prostate cancer progression.
Collapse
Affiliation(s)
- Ashwani K Sood
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mundinger GS, Espina V, Liotta LA, Petricoin EF, Calvo KR. Clinical phosphoproteomic profiling for personalized targeted medicine using reverse phase protein microarray. Target Oncol 2006. [DOI: 10.1007/s11523-006-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as Novel Targets for Cancer Therapy (Part IV). ACTA ACUST UNITED AC 2005; 5:397-407. [PMID: 16336004 DOI: 10.2165/00129785-200505060-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This is the final part of a four-part serial review on oncogenes and their potential use as targets for cancer therapy. Previous sections discussed various categories of oncogenes (growth factors, tyrosine kinases, intermediate signaling molecules, and transcription factors) and the advances made in various strategies being used to alter their actions. This part describes four oncogenes, MDM2, BCL2, XIAP, and Survivin, that are involved in regulation of the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Zhuo Zhang
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|