Sahota T, Sawicka K, Taylor J, Tanna S. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.
Drug Dev Ind Pharm 2011;
37:351-8. [PMID:
21244237 DOI:
10.3109/03639045.2010.513983]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM
Dextran methacrylate (dex-MA) and concanavalin A (con A)-methacrylamide were photopolymerized to produce covalently cross-linked glucose-sensitive gels for the basis of an implantable closed-loop insulin delivery device.
METHODS
The viscoelastic properties of these polymerized gels were tested rheologically in the non-destructive oscillatory mode within the linear viscoelastic range at glucose concentrations between 0 and 5% (w/w).
RESULTS
For each cross-linked gel, as the glucose concentration was raised, a decrease in storage modulus, loss modulus and complex viscosity (compared at 1 Hz) was observed, indicating that these materials were glucose responsive. The higher molecular weight acrylic-derivatized dextrans [degree of substitution (DS) 3 and 8%] produced higher complex viscosities across the glucose concentration range.
CONCLUSIONS
These studies coupled with in vitro diffusion experiments show that dex-MA of 70 kDa and DS (3%) was the optimum mass average molar mass to produce gels that show reduced component leach, glucose responsiveness, and insulin transport useful as part of a self-regulating insulin delivery device.
Collapse