1
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
2
|
Hyldbakk A, Mørch Y, Snipstad S, Åslund AKO, Klinkenberg G, Nakstad VT, Wågbø AM, Schmid R, Molesworth PP. Identification of novel cyanoacrylate monomers for use in nanoparticle drug delivery systems prepared by miniemulsion polymerisation - A multistep screening approach. Int J Pharm X 2022; 4:100124. [PMID: 35898812 PMCID: PMC9310130 DOI: 10.1016/j.ijpx.2022.100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Poly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach. A multistep strategy, including cytotoxicity screening of alcohols as degradation products of PACA (44 alcohols), NPs (14 polymers), and a final in vivo study (2 polymers) gave poly (2-ethylhexyl cyanoacrylate) PEHCA as a promising novel PACA candidate. For the first time, this work presents cytotoxicity data on several novel ACAs, PEHCA in vivo toxicity data, and miniemulsion polymerisation-based encapsulation of the cabazitaxel and NR688 in novel PACA candidates. Furthermore, several of the ACA candidates were compatible with a wider selection of lipophilic active pharmaceutical ingredients (APIs) versus commercially available controls. Combined, this work demonstrates the potential benefits of expanding the array of available ACA materials in drug delivery. Novel ACAs have the potential to encapsulate a wider range of APIs in miniemulsion polymerisation processes and may also broaden PACA applicability in other fields. Screening of novel poly(alkylcyanoacrylate) (PACA) materials to broaden PACA nanomedicine potential. A comprehensive screening process evaluated the toxicity of novel poly(alkylcyanoacrylate) (PACA) materials. Novel poly(2-ethylhexyl cyanoacrylate) nanoparticles has a promising safety profile. Novel ACA materials show potential to enable encapsulation of a wider range of APIs.
Collapse
Affiliation(s)
- Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Vu To Nakstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Ane-Marit Wågbø
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Ruth Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Peter P Molesworth
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| |
Collapse
|
3
|
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16:71. [PMID: 30231877 PMCID: PMC6145203 DOI: 10.1186/s12951-018-0392-8] [Citation(s) in RCA: 3103] [Impact Index Per Article: 443.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Leonardo Fernandes Fraceto
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Estefania Vangelie Ramos Campos
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Maria del Pilar Rodriguez-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | | | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000 Brazil
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh 211004 India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
4
|
dos Santos PP, Flôres SH, de Oliveira Rios A, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011; 32:8593-604. [DOI: 10.1016/j.biomaterials.2011.07.057] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/17/2011] [Indexed: 11/20/2022]
|
6
|
Radwan M, AlQuadeib B, Aloudah N, Aboul Enein H. Pharmacokinetics of ketorolac loaded to polyethylcyanoacrylate nanoparticles using UPLC MS/MS for its determination in rats. Int J Pharm 2010; 397:173-8. [DOI: 10.1016/j.ijpharm.2010.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/13/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
|
7
|
|
8
|
Graf A, McDowell A, Rades T. Poly(alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics – is there real potential? Expert Opin Drug Deliv 2009; 6:371-87. [DOI: 10.1517/17425240902870413] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Tesfai A, El-Zahab B, Bwambok DK, Baker GA, Fakayode SO, Lowry M, Warner IM. Controllable formation of ionic liquid micro- and nanoparticles via a melt-emulsion-quench approach. NANO LETTERS 2008; 8:897-901. [PMID: 18237150 DOI: 10.1021/nl073184p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a facile, scalable, and general method for the size-variable generation of monodispersed, near-spherical solid-state (frozen) ionic liquid nanoparticles based on a novel melt-emulsion-quench approach. Simple manipulation of the internal templating droplets within oil-in-water (o/w) microemulsions also permits the formation of well-defined microspheres. This simple and rapid preparation, requiring neither specialized equipment nor harsh conditions, suggests a wealth of potential for these designer nanomaterials within the biomedical, materials, and analytical communities.
Collapse
Affiliation(s)
- Aaron Tesfai
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Krauel K, Girvan L, Hook S, Rades T. Characterisation of colloidal drug delivery systems from the naked eye to Cryo-FESEM. Micron 2007; 38:796-803. [PMID: 17698364 DOI: 10.1016/j.micron.2007.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(ethylcyanoacrylate) nanoparticles prepared by interfacial polymerisation on the basis of microemulsions were prepared in this study and both colloidal systems, nanoparticles and microemulsions, were analysed by visual observation and several microscopic techniques. Phase boundaries for the microemulsions of the two pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with and without butanol as a cosurfactant were determined by visual observation of the samples. Microemulsions containing liquid crystals were determined by polarisation light microscopy. Using freeze-fracture transmission electron microscopy and Cryo-field emission scanning electron microscopy the type of microemulsion (w/o droplet, bicontinuous, solution) was characterised. Nanoparticles prepared from the different types of microemulsion were additionally observed by conventional scanning electron microscopy. The size of the nanoparticles obtained from electron microscopy was in good agreement with particle sizing techniques (photon correlation spectroscopy) from earlier studies and no morphological differences could be observed in particles prepared from the different types of microemulsions. Cryo-field emission scanning electron microscopy proved to be a most valuable technique in the visualisation of the colloidal systems as samples could be observed close to their natural state.
Collapse
Affiliation(s)
- Karen Krauel
- New Zealand National School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
11
|
Krauel K, Davies NM, Hook S, Rades T. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J Control Release 2005; 106:76-87. [PMID: 15967536 DOI: 10.1016/j.jconrel.2005.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/15/2022]
Abstract
A phase diagram of the pseudoternary system ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with butanol as a cosurfactant was prepared. Areas containing optically isotropic, low viscosity one-phase systems were identified and systems therein designated as w/o droplet-, bicontinuous- or solution-type microemulsions using conductivity, viscosity, cryo-field emission scanning electron microscopy and self-diffusion NMR. Nanoparticles were prepared by interfacial polymerization of selected w/o droplet, bicontinuous- or solution-type microemulsions with ethyl-2-cyanoacrylate. Morphology of the particles and entrapment of the water-soluble model protein ovalbumin were investigated. Addition of monomer to the different types of microemulsions (w/o droplet, bicontinuous, solution) led to the formation of nanoparticles, which were similar in size ( approximately 250 nm), polydispersity index ( approximately 0.13), zeta-potential ( approximately -17 mV) and morphology. The entrapment of the protein within these particles was up to 95%, depending on the amount of monomer used for polymerization and the type of microemulsion used as a polymerization template. The formation of particles with similar characteristics from templates having different microstructure is surprising, particularly considering that polymerization is expected to occur at the water-oil interface by base-catalysed polymerization. Dynamics within the template (stirring, viscosity) or indeed interfacial phenomena relating to the solid-liquid interface appear to be more important for the determination of nanoparticle morphology and characteristics than the microstructure of the template system.
Collapse
Affiliation(s)
- K Krauel
- New Zealand National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | |
Collapse
|