1
|
Abdelhakim M, McMurray E, Syed AR, Kafkas S, Kamau AA, Schofield PN, Hoehndorf R. DDIEM: drug database for inborn errors of metabolism. Orphanet J Rare Dis 2020; 15:146. [PMID: 32527280 PMCID: PMC7291537 DOI: 10.1186/s13023-020-01428-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inborn errors of metabolism (IEM) represent a subclass of rare inherited diseases caused by a wide range of defects in metabolic enzymes or their regulation. Of over a thousand characterized IEMs, only about half are understood at the molecular level, and overall the development of treatment and management strategies has proved challenging. An overview of the changing landscape of therapeutic approaches is helpful in assessing strategic patterns in the approach to therapy, but the information is scattered throughout the literature and public data resources. RESULTS We gathered data on therapeutic strategies for 300 diseases into the Drug Database for Inborn Errors of Metabolism (DDIEM). Therapeutic approaches, including both successful and ineffective treatments, were manually classified by their mechanisms of action using a new ontology. CONCLUSIONS We present a manually curated, ontologically formalized knowledgebase of drugs, therapeutic procedures, and mitigated phenotypes. DDIEM is freely available through a web interface and for download at http://ddiem.phenomebrowser.net.
Collapse
Affiliation(s)
- Marwa Abdelhakim
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| | - Eunice McMurray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG United Kingdom
| | - Ali Raza Syed
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| | - Senay Kafkas
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| | - Allan Anthony Kamau
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
| | - Paul N Schofield
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG United Kingdom
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| |
Collapse
|
4
|
Kaput J, Cotton RGH, Hardman L, Watson M, Al Aqeel AI, Al-Aama JY, Al-Mulla F, Alonso S, Aretz S, Auerbach AD, Bapat B, Bernstein IT, Bhak J, Bleoo SL, Blöcker H, Brenner SE, Burn J, Bustamante M, Calzone R, Cambon-Thomsen A, Cargill M, Carrera P, Cavedon L, Cho YS, Chung YJ, Claustres M, Cutting G, Dalgleish R, den Dunnen JT, Díaz C, Dobrowolski S, dos Santos MRN, Ekong R, Flanagan SB, Flicek P, Furukawa Y, Genuardi M, Ghang H, Golubenko MV, Greenblatt MS, Hamosh A, Hancock JM, Hardison R, Harrison TM, Hoffmann R, Horaitis R, Howard HJ, Barash CI, Izagirre N, Jung J, Kojima T, Laradi S, Lee YS, Lee JY, Gil-da-Silva-Lopes VL, Macrae FA, Maglott D, Marafie MJ, Marsh SGE, Matsubara Y, Messiaen LM, Möslein G, Netea MG, Norton ML, Oefner PJ, Oetting WS, O'Leary JC, de Ramirez AMO, Paalman MH, Parboosingh J, Patrinos GP, Perozzi G, Phillips IR, Povey S, Prasad S, Qi M, Quin DJ, Ramesar RS, Richards CS, Savige J, Scheible DG, Scott RJ, Seminara D, Shephard EA, Sijmons RH, Smith TD, Sobrido MJ, Tanaka T, Tavtigian SV, Taylor GR, Teague J, Töpel T, Ullman-Cullere M, Utsunomiya J, van Kranen HJ, Vihinen M, Webb E, Weber TK, Yeager M, Yeom YI, et alKaput J, Cotton RGH, Hardman L, Watson M, Al Aqeel AI, Al-Aama JY, Al-Mulla F, Alonso S, Aretz S, Auerbach AD, Bapat B, Bernstein IT, Bhak J, Bleoo SL, Blöcker H, Brenner SE, Burn J, Bustamante M, Calzone R, Cambon-Thomsen A, Cargill M, Carrera P, Cavedon L, Cho YS, Chung YJ, Claustres M, Cutting G, Dalgleish R, den Dunnen JT, Díaz C, Dobrowolski S, dos Santos MRN, Ekong R, Flanagan SB, Flicek P, Furukawa Y, Genuardi M, Ghang H, Golubenko MV, Greenblatt MS, Hamosh A, Hancock JM, Hardison R, Harrison TM, Hoffmann R, Horaitis R, Howard HJ, Barash CI, Izagirre N, Jung J, Kojima T, Laradi S, Lee YS, Lee JY, Gil-da-Silva-Lopes VL, Macrae FA, Maglott D, Marafie MJ, Marsh SGE, Matsubara Y, Messiaen LM, Möslein G, Netea MG, Norton ML, Oefner PJ, Oetting WS, O'Leary JC, de Ramirez AMO, Paalman MH, Parboosingh J, Patrinos GP, Perozzi G, Phillips IR, Povey S, Prasad S, Qi M, Quin DJ, Ramesar RS, Richards CS, Savige J, Scheible DG, Scott RJ, Seminara D, Shephard EA, Sijmons RH, Smith TD, Sobrido MJ, Tanaka T, Tavtigian SV, Taylor GR, Teague J, Töpel T, Ullman-Cullere M, Utsunomiya J, van Kranen HJ, Vihinen M, Webb E, Weber TK, Yeager M, Yeom YI, Yim SH, Yoo HS. Planning the human variome project: the Spain report. Hum Mutat 2009; 30:496-510. [PMID: 19306394 PMCID: PMC5879779 DOI: 10.1002/humu.20972] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008.
Collapse
Affiliation(s)
- Jim Kaput
- Division of Personalised Nutrition and Medicine, FDA/National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|