1
|
Liu S, Tan X, Liu S. The role of extracellular vesicles in COPD and potential clinical value. Respir Res 2024; 25:84. [PMID: 38331841 PMCID: PMC10854156 DOI: 10.1186/s12931-024-02719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease and a major health burden worldwide. Extracellular vesicles (EVs) are nanosized vesicles which possess a lipid bilayer structure that are secreted by various cells. They contain a variety of bioactive substances, which can regulate various physiological and pathological processes and are closely related to the development of diseases. Recently, EVs have emerged as a novel tool for intercellular crosstalk, which plays an essential role in COPD development. This paper reviews the role of EVs in the development of COPD and their potential clinical value, in order to provide a reference for further research on COPD.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaowu Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
2
|
Fang C, Kang B, Zhao P, Ran J, Wang L, Zhao L, Luo H, Tao L. MCP-4 and Eotaxin-3 Are Novel Biomarkers for Chronic Obstructive Pulmonary Disease. Can Respir J 2023; 2023:8659293. [PMID: 37200921 PMCID: PMC10188265 DOI: 10.1155/2023/8659293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
The aim of our study was to examine the production of monocyte chemoattractant protein (MCP-4) and eotaxin-3 during the onset and progression of COPD. The expression levels of MCP-4 and eotaxin-3 were evaluated in COPD samples and healthy controls using immunostaining and ELISA. The relationship between the clinic pathological features in the participants and the expression of MCP-4 and eotaxin-3 were evaluated. The association of MCP-4/eotaxin-3 production in COPD patients was also determined. The results revealed enhanced production of MCP-4 and eotaxin-3 in COPD patients especially the cases with AECOPD in both bronchial biopsies and bronchial washing fluid samples. Furthermore, the expression signatures of MCP-4/eotaxin-3 show high AUC values in distinguishing COPD patients and healthy volunteers and AECOPD and stable COPD cases, respectively. Additionally, the number of MCP-4/eotaxin-3 positive cases was notably increased in AECOPD patients compared to those with stable COPD. Moreover, the expression of MCP-4 and eotaxin-3 was positively correlated in COPD and AECOPD cases. In addition, the levels of MCP-4 and eotaxin-3 could be increased in HBEs stimulated with LPS, which is a risk factor of COPD. Moreover, MCP-4 and eotaxin-3 may exert their regulatory functions in COPD by regulating CCR2, 3, and 5. These data indicated that MCP-4 and eotaxin-3 were potential markers for the clinical course of COPD, which could provide guidance for accurate diagnosis and treatment for this disease in future clinical practice.
Collapse
Affiliation(s)
- Chun Fang
- Department of Oncology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Baoguo Kang
- Department of Oncology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Pan Zhao
- Department of General Surgery, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Jing Ran
- Department of Pathology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Lifang Wang
- Departments of Obstetrics and Gynecology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Lingqiong Zhao
- Department of Oncology, Chongqing General Hospital, Chongqing 400010, China
| | - Hangyu Luo
- Department of Internal Medicine, The Chongqing Red Cross Hospital, Chongqing 400021, China
| | - Ling Tao
- Department of Oncology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| |
Collapse
|
3
|
Uysal P. Novel Applications of Biomarkers in Chronic Obstructive Pulmonary Disease. Biomark Med 2022. [DOI: 10.2174/9789815040463122010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health
problem and an increasing cause of morbidity and mortality worldwide. Currently,
COPD is considered a multisystem disease. Although it primarily affects the lungs,
structural and functional changes occur in other organs due to systemic inflammation.
It is stated that in patients with COPD, airway and systemic inflammatory markers are
increased and that these markers are high are associated with a faster decline in lung
functions. In recent years, numerous articles have been published on the discovery and
evaluation of biomarkers in COPD. Many markers have also been studied to accurately
assess COPD exacerbations and provide effective treatment. However, based on the
evidence from published studies, a single molecule has not been adequately validated
for broad clinical use.
Collapse
Affiliation(s)
- Pelin Uysal
- Department of Chest Diseases, Faculty of Medicine, Mehmet Ali Aydınlar University, Atakent
Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
|
5
|
Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, Maurya PK. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol 2018; 234:2067-2082. [DOI: 10.1002/jcp.27181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Taru Aggarwal
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | - Ridhima Wadhwa
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | | | - Kanishka Sharma
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Varsha Rani
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Pawan K. Maurya
- Amity Institute of Biotechnology, Amity UniversityNoida India
- Amity Education GroupOakdale, Long Island (Suffolk) New York
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of PsychiatryFederal University of São PauloSão Paulo Brazil
| |
Collapse
|
6
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Ruan W, Wu M, Shi L, Li F, Dong L, Qiu Y, Wu X, Ying K. Serum levels of IGFBP7 are elevated during acute exacerbation in COPD patients. Int J Chron Obstruct Pulmon Dis 2017; 12:1775-1780. [PMID: 28684903 PMCID: PMC5485893 DOI: 10.2147/copd.s132652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective The purpose of this study was to explore the insulin-like growth factor binding protein 7 (IGFBP7) level in the serum of chronic obstructive pulmonary disease (COPD) patients during acute exacerbation (AE). Methods The study population consisted of 47 AECOPD patients, including 25 patients enrolled between January 2011 and February 2011 (the first group) and 22 patients enrolled from December 2011 to August 2012 (the second group) and 29 healthy controls. Chemiluminescence–linked immunoassay was used to detect serum IGFBP7 levels. For the second group patients, IGFBP7 and C-reactive protein (CRP) levels were measured both on the admission day and on the discharge day. Results Among the first group AECOPD patients, serum IGFBP7 levels were significantly elevated in AECOPD patients in the intensive care unit (ICU; 52.92±16.32 ng/mL), and in hospitalized AECOPD patients not in ICU (40.66±13.9), compared to healthy subjects (30.3±7.09 ng/mL; P<0.01). For the second group AECOPD patients, the increased IGFBP7 levels reduced after the patients had recovered (34.42±11.88 vs 27.24±7.2 ng/mL; P<0.01). During AE, the correlation coefficient between IGFBP7 and CRP was 0.357. In receiver operating characteristic analysis, the area under the curve was 0.799 for CRP, and 0.663 for IGFBP7 in distinguishing patients with AECOPD on the admission day from the discharge day. Conclusion Serum IGFBP7 levels were raised during AECOPD. Similar to the expression pattern of CRP, the IGFBP7 levels reduced after convalescence, suggesting that IGFBP7 might have a candidate role as a biomarker of AECOPD. No significant linear correlation was detected between IGFBP7 and CRP, indicating the probable different role for the two molecules in assessing AECOPD. Further study is needed to explore the value of IGFBP7 in differentiating phenotypes of AECOPD.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Minliang Wu
- Department of Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine
| | - Liuhong Shi
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Fengying Li
- Department of Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Hangzhou, China
| | - Liangliang Dong
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Yuanhua Qiu
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xiaohong Wu
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Kejing Ying
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| |
Collapse
|
8
|
Chen YWR, Leung JM, Sin DD. A Systematic Review of Diagnostic Biomarkers of COPD Exacerbation. PLoS One 2016; 11:e0158843. [PMID: 27434033 PMCID: PMC4951145 DOI: 10.1371/journal.pone.0158843] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023] Open
Abstract
The aims of this systematic review were to determine which blood-based molecules have been evaluated as possible biomarkers to diagnose chronic obstructive pulmonary disease (COPD) exacerbations (AECOPD) and to ascertain the quality of these biomarker publications. Patients of interest were those that have been diagnosed with COPD. MEDLINE, EMBASE, and CINAHL databases were searched systematically through February 2015 for publications relating to AECOPD diagnostic biomarkers. We used a modified guideline for the REporting of tumor MARKer Studies (mREMARK) to assess study quality. Additional components of quality included the reporting of findings in a replication cohort and the use of receiver-operating characteristics area-under-the curve statistics in evaluating performance. 59 studies were included, in which the most studied biomarkers were C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). CRP showed consistent elevations in AECOPD compared to control subjects, while IL-6 and TNF-α had variable statistical significance and results. mREMARK scores ranged from 6 to 18 (median score of 13). 12 articles reported ROC analyses and only one study employed a replication cohort to confirm biomarker performance. Studies of AECOPD diagnostic biomarkers remain inconsistent in their reporting, with few studies employing ROC analyses and even fewer demonstrating replication in independent cohorts.
Collapse
Affiliation(s)
- Yu-Wei Roy Chen
- Centre for Heart Lung Innovation, Institute for Heart Lung Health at St. Paul’s Hospital & Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Institute for Heart Lung Health at St. Paul’s Hospital & Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D. Sin
- Centre for Heart Lung Innovation, Institute for Heart Lung Health at St. Paul’s Hospital & Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Apperley S, Park HY, Holmes DT, Man SFP, Tashkin D, Wise RA, Connett JE, Sin DD. Serum Bilirubin and Disease Progression in Mild COPD. Chest 2015; 148:169-175. [PMID: 25539285 DOI: 10.1378/chest.14-2150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND COPD is a chronic inflammatory disorder associated with oxidative stress. Serum bilirubin has potent antioxidant actions, and higher concentrations have been shown to protect against oxidative stress. The relation between serum bilirubin and COPD progression is unknown. METHODS Serum bilirubin was measured in 4,680 smokers aged 35 to 60 years old with mild to moderate airflow limitation. The relationship of serum bilirubin to postbronchodilator FEV₁ and rate of FEV1 decline over 3 to 9 years was determined using regression modeling. Total and disease-specific mortality were also ascertained. RESULTS Serum bilirubin was positively related to FEV₁ (P < .001). Serum bilirubin was also negatively related to the annual decline in FEV₁ when adjusted for baseline demographics, pack-years smoked, and baseline measures of lung function (P = .01). Additionally, serum bilirubin was negatively associated with risk of death from coronary heart disease (P = .03); however, the relationships between bilirubin and other mortality end points were not statistically significant (P > .05). CONCLUSIONS Bilirubin is inversely related to COPD disease severity and progression. Higher serum bilirubin concentration was associated with a higher FEV₁ and less annual decline in FEV₁. Bilirubin was also associated with less coronary heart disease mortality. These data support the hypothesis that bilirubin has a protective effect on COPD disease progression, possibly through its antioxidant actions. Bilirubin may prove useful as an easily accessible and readily available blood-based COPD biomarker.
Collapse
Affiliation(s)
- Scott Apperley
- Department of Medicine, Pulmonary Division, University of British Columbia, Vancouver, BC, Canada
| | - Hye Yun Park
- UBC James Hogg Research Centre and the Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, BC, Canada; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Daniel T Holmes
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - S F Paul Man
- Department of Medicine, Pulmonary Division, University of British Columbia, Vancouver, BC, Canada; UBC James Hogg Research Centre and the Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, BC, Canada
| | - Donald Tashkin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Robert A Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - John E Connett
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Don D Sin
- Department of Medicine, Pulmonary Division, University of British Columbia, Vancouver, BC, Canada; UBC James Hogg Research Centre and the Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Abdul Roda M, Fernstrand AM, Redegeld FA, Blalock JE, Gaggar A, Folkerts G. The matrikine PGP as a potential biomarker in COPD. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1095-101. [PMID: 26033353 DOI: 10.1152/ajplung.00040.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/06/2015] [Indexed: 12/16/2022] Open
Abstract
The lack of a well-characterized biomarker for the diagnosis of chronic obstructive pulmonary disease (COPD) has increased interest toward finding one, because this would provide potential insight into disease pathogenesis and progression. Since persistent neutrophilia is an important hallmark in COPD Pro-Gly-Pro (PGP), an extracellular matrix-derived neutrophil chemoattractant, has been suggested to be a potential biomarker in COPD. The purpose of this review is to critically examine both biological and clinical data related to the role of PGP in COPD, with particular focus on its role as a clinical biomarker and potential therapeutic target in disease. The data provided in this review will offer insight into the potential use of PGP as end point for future clinical studies in COPD lung disease. Following PGP levels during disease might serve as a guide for the progression of lung disorders.
Collapse
Affiliation(s)
- Mojtaba Abdul Roda
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - Amanda M Fernstrand
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - J Edwin Blalock
- Department of Medicine and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit Gaggar
- Department of Medicine and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| |
Collapse
|
11
|
Lambers C, Qi Y, Eleni P, Costa L, Zhong J, Tamm M, Block LH, Roth M. Extracellular matrix composition is modified by β₂-agonists through cAMP in COPD. Biochem Pharmacol 2014; 91:400-8. [PMID: 25107701 DOI: 10.1016/j.bcp.2014.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Long acting β₂-agonists (LABA) have been reported to modify the extracellular matrix (ECM) composition in the airway wall. Based on our earlier studies we here investigated the mechanism underlying the control of ECM modification by LABA in primary human airway smooth muscle cells. Cells were treated with formoterol or salmeterol (30 min) before TGF-β₁ stimulation (2-3 days) Using RT-PCT, immuno-blotting and ELISA the de novo synthesis and deposition of collagen type-I, -III, -IV and fibronectin were determined. Matrix metalloproteinases (MMP)-2 and -9 were analyzed by zymography. Both LABA activated cAMP and its corresponding transcription factor CREB within 60 min and thus partly reduced TGF-β₁-induced gene transcription of collagen type-I, -III, fibronectin and connective tissue growth factor (CTGF). The inhibitory effect of both LABA on collagen type-I and -III deposition involved a cAMP dependent mechanism, while the inhibitory effect of the two drugs on TGF-β1-induced fibronectin deposition and on CTGF secretion was independent of cAMP. Interestingly, none of the two LABA reduced CTGF-induced synthesis of collagen type-I or type-III deposition. In addition, none of the two LABA modified collagen type-IV deposition or the expression and activity of MMP-2 or MMP-9. Our results show that LABA can prevent de novo deposition of specific ECM components through cAMP dependent and independent signaling. However, they do not reduce all ECM components by the same mechanism and they do not reduce existing collagen deposits. This might explain some of the controversial reports on the anti-remodeling effect of LABA in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Christopher Lambers
- Division of Respiratory Medicine, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Ying Qi
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Papakonstantinou Eleni
- Pharmacology, School of Medicine, University of Thessaloniki, GR-54621 Thessaloniki, Greece
| | - Luigi Costa
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Jun Zhong
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Lutz-Henning Block
- Division of Respiratory Medicine, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Roth
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| |
Collapse
|
12
|
Abstract
The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.
Collapse
|
13
|
Cissik JM. The Effects of Chronic Obstructive Pulmonary Disease. Strength Cond J 2013. [DOI: 10.1519/ssc.0b013e31829776b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Jobse BN, Rhem RG, Wang IQ, Counter WB, Stämpfli MR, Labiris NR. Detection of lung dysfunction using ventilation and perfusion SPECT in a mouse model of chronic cigarette smoke exposure. J Nucl Med 2013; 54:616-23. [PMID: 23397007 DOI: 10.2967/jnumed.112.111419] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Chronic obstructive pulmonary disease is a leading cause of morbidity and mortality worldwide. Exposure to cigarette smoke (CS) is a major risk factor for developing this chronic airflow impairment, but the early progression of disease is not well defined or understood. Ventilation/perfusion (V/Q) SPECT provides a noninvasive assessment of lung function to further our current understanding of how CS affects the lung. METHODS BALB/c mice were imaged with V/Q SPECT and CT after 8 and 24 wk of whole-body exposure to mainstream CS. Bronchoalveolar lavage was collected and cell differentials produced to determine inflammatory patterns. Histologic lung sections were collected, and a semiautomated quantitative analysis of airspace enlargement was applied to whole histology slices. RESULTS Exposure to CS induced an inflammatory response that included increases in the numbers of both mononuclear cells and neutrophils. Airspace enlargement was also significantly increased at 8 wk of CS exposure and was still more pronounced at 24 wk. Ventilation and perfusion correlation at the voxel level depicted a significant decrease in matching at 8 wk of CS exposure that was also apparent after 24 wk. The standard deviation (SD) of the log(V/Q) curve, a basic measure of heterogeneity, was increased from 0.44 ± 0.02 in age-matched controls to 0.62 ± 0.05 with CS exposure at 24 wk, indicating an increase in V/Q mismatching between 8 and 24 wk of CS exposure. CT, however, was not capable of discriminating control from CS-exposed animals at either time point, even with greater resolution and respiratory gating. CONCLUSION This study demonstrated that, before CT detection of structural changes, V/Q imaging detected changes in gas-exchange potential. This functional impairment corresponded to increased lung inflammation and increased airspace enlargement. In vivo V/Q imaging can detect early changes to the lung caused by CS exposure and thus provides a noninvasive method of longitudinally studying lung dysfunction in preclinical models. In the future, these measures could be applied clinically to study and diagnose the early stages of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Brian N Jobse
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|