1
|
Ferreira IB, Garcia IS, Lima MLF, da Silva RC, Santarém VA. Evaluation of heating and liming treatments in sand samples artificially contaminated with Ancylostoma spp. eggs. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e002124. [PMID: 38896755 PMCID: PMC11253820 DOI: 10.1590/s1984-29612024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
Ancylostoma spp. are found worldwide. Infected dog and cat feces can contaminate soil in public places. Despite prophylactic measures being available, studies on direct remediation of Ancylostoma-contaminated soils are scarce. This study aimed to determine the impact of heat treatment and liming on the viability of Ancylostoma spp. eggs in artificially contaminated sandy soil. Sterilized sand samples were contaminated with Ancylostoma spp. eggs extracted from infected dogs' feces. Samples were heated (trial I) to 70 °C or 80 °C, then sieved after 24 hours (212, 90, 38, and 25 µm). Larval cultures were assessed for larval development following heat treatment. Five quicklime concentrations (trial II; 50, 30, 20, 10 and 5%) were used to treat sand. The effect of liming on larval cultures was assessed by measuring embryonic development. Filariform larvae were exposed to 20% quicklime (25 °C and 37 °C, 20 min). Heat treatment destroys Ancylostoma spp. eggs and prevents in vitro larval development. Liming at 50, 30, and 20% concentrations made embryonic development impossible. However, filariform larvae treated with 20% lime solution retained their motility. Heating at 70 °C and liming at 20% were sufficient to make Ancylostoma spp. egg embryogenesis impossible in experimentally contaminated sand samples.
Collapse
Affiliation(s)
- Isabella Braghin Ferreira
- Laboratório de Parasitologia Veterinária, Hospital Universitário Veterinário, Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, SP, Brasil
| | - Isabele Santos Garcia
- Laboratório de Parasitologia Veterinária, Hospital Universitário Veterinário, Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, SP, Brasil
| | - Maria Linda Ferreira Lima
- Faculdade de Pós-graduação em Zootecnia, Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, SP, Brasil
| | - Rodrigo Costa da Silva
- Laboratório de Parasitologia Veterinária, Hospital Universitário Veterinário, Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, SP, Brasil
| | - Vamilton Alvares Santarém
- Laboratório de Parasitologia Veterinária, Hospital Universitário Veterinário, Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, SP, Brasil
- Faculdade de Pós-graduação em Zootecnia, Universidade do Oeste Paulista – UNOESTE, Presidente Prudente, SP, Brasil
| |
Collapse
|
2
|
Kundik A, Musimbi ZD, Krücken J, Hildebrandt T, Kornilov O, Hartmann S, Ebner F. Quantifying metabolic activity of Ascaris suum L3 using resazurin reduction. Parasit Vectors 2023; 16:243. [PMID: 37468906 DOI: 10.1186/s13071-023-05871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Helminth infections are an important public health problem in humans and have an even greater impact on domestic animal and livestock welfare. Current readouts for anthelmintic drug screening assays are stage development, migration, or motility that can be subjective, laborious, and low in throughput. The aim of this study was to apply and optimize a fluorometric technique using resazurin for evaluating changes in the metabolic activity of Ascaris suum third-stage larvae (L3), a parasite of high economic relevance in swine. METHODS Ascaris suum L3 were mechanically hatched from 6- to 8-week embryonated and sucrose-gradient-enriched eggs. Resazurin dye and A. suum L3 were titrated in 96-well microtiter plates, and resazurin reduction activity was assessed by fluorometry after 24 h of incubation. Fluorescence microscopy was used to localize the resazurin reduction site within the larvae. Finally, we exposed A. suum L3 to various stress conditions including heat, methanol, and anthelmintics, and investigated their impact on larval metabolism through resazurin reduction activity. RESULTS We show that the non-fluorescent dye resazurin is reduced inside vital A. suum L3 to fluorescent resorufin and released into the culture media. Optimal assay parameters are 100-1000 L3 per well, a resazurin concentration of 7.5 µg/ml, and incubation at 37 °C/5% CO2 for 24 h. An intact L2 sheath around the L3 of A. suum completely prevents the uptake of resazurin, while in unsheathed L3, the most intense fluorescence signal is observed along the larval midgut. L3 exposed to methanol or heat show a gradually decreased resazurin reduction activity. In addition, 24 h exposure to ivermectin at 0.625 µM, mebendazole at 5 µM, and thiabendazole from 10 to 100 µM significantly decreased larval metabolic activity by 55%, 73%, and 70% to 89%, respectively. CONCLUSIONS Together, our results show that both metabolic stressors and anthelmintic drugs significantly and reproducibly reduce the resazurin reduction activity of A. suum L3, making the proposed assay a sensitive and easy-to-use method to evaluate metabolic activity of A. suum L3 in vitro.
Collapse
Affiliation(s)
- Arkadi Kundik
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D Musimbi
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Susanne Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Chair of Infection Pathogenesis, Department of Molecular Life Sciences, School of Life Sciences, Technical University Munich, Munich, Germany.
| |
Collapse
|
3
|
Ganesa Pillai M, Goyal S, Zawar A, Kumar MSA, Bakshi HS, C V, Nakamura K. An experimental study probing moisture kinetics and indices of microwave dried fecal sludge with an insight on real world applications. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2041034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahesh Ganesa Pillai
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore INDIA
| | - Sparsh Goyal
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore INDIA
| | - Aditya Zawar
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore INDIA
| | - M S Arun Kumar
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore INDIA
| | - Harshdeep Singh Bakshi
- Faculty of Natural Sciences, Centre for Environmental Policy, Imperial College London, South Kensington, UK
| | - Vijayalakshmi C
- Department of Statistics and Applied Mathematics, Central University of Tamil Nadu,Thiruvarur India
| | - Kazuho Nakamura
- Division of Material Science and Chemical Engineering, Yokohama National University, Kanagawa JAPAN
| |
Collapse
|
4
|
Li M, Song G, Liu R, Huang X, Liu H. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 16:70. [PMID: 34608423 PMCID: PMC8482957 DOI: 10.1007/s11783-021-1504-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human pathogens and their significant threats to public health security. The monitoring and control of human pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants (WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and disposal of sludge are important to minimize potential risks to the environment and public health. However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this consideration, this review summarizes the control performance of pathogenic microorganisms such as enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies, including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed. Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic microorganisms in sludge. This review advances the quantitative assessment of pathogenic microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment and disposal of sludge for pathogenic microorganism control.
Collapse
Affiliation(s)
- Mengtian Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruiping Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing, 100084 China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
5
|
Getahun S, Septien S, Mata J, Somorin T, Mabbett I, Buckley C. Drying characteristics of faecal sludge from different on-site sanitation facilities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110267. [PMID: 32148321 PMCID: PMC7065040 DOI: 10.1016/j.jenvman.2020.110267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 05/30/2023]
Abstract
Drying is one of the treatment techniques used for the dual purpose of safe disposal and energy recovery of faecal sludge (FS). Limited data are available regarding the FS drying process. In this paper the drying properties of FS were investigated using samples from ventilated improved pit (VIP) latrines and urine diversion dry toilets (UDDT) and an anaerobic baffle reactor (ABR) from a decentralized wastewater treatment systems. Moisture content, total solids content, volatile solids content, water activity, coupled thermogravimetry & differential thermal analysis (TGA-DTA) and calorific value tests were used to characterize FS drying. Drying kinetics and water activity measured at different moisture content during drying (100 °C) were similar for the samples from different on-site sanitation facilities. Experimental heat of drying results revealed that FS requires two to three times that of the latent heat of vaporization of water for drying. Drying temperature was more significant than the sludge source in determining the final volatile solids content of the dried samples. This was reinforced by the dynamic TGA that showed considerable thermal degradation (2-11% dry solid mass) near 200 °C. Below 200 C, the calorific value of the dried samples exhibited no significant difference. The average calorific values of VIP, UDDT and ABR samples at 100 °C were 14.78, 15.70, 17.26 MJ/kg dry solid, respectively. This suggests that the fuel value of FS from the aforementioned sanitation facilities will not be significantly affected by drying temperature below 200 °C. Based on this study, the most suitable temperature for drying of FS for a solid fuel application was found to be 150 °C.
Collapse
Affiliation(s)
- Samuel Getahun
- Pollution Research Group, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Santiago Septien
- Pollution Research Group, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Jaime Mata
- Pollution Research Group, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Tosin Somorin
- Offshore Renewable Energy Engineering Centre, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Ian Mabbett
- Chemistry Department, Swansea University Prifysgol Abertawe, Bay Campus, Swansea, SAl 8EN, United Kingdom.
| | - Christopher Buckley
- Pollution Research Group, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|