1
|
Ngo H, Parmley EJ, Ricker N, Winder C, Murphy HM. Quantitative microbial risk assessment of acute gastrointestinal illness attributable to freshwater recreation in Ontario. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024:10.17269/s41997-024-00969-4. [PMID: 39658778 DOI: 10.17269/s41997-024-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES The burden of disease associated with acute gastrointestinal illness (AGI) in Canada is estimated to be ~ 20 million cases/year. One known risk factor for developing AGI is recreation in freshwater bodies such as lakes. The proportion of cases attributable to freshwater recreation in Canada, however, is currently unknown. The study objective was to estimate the risk of developing AGI from exposure to Giardia, Cryptosporidium, Campylobacter, Escherichia coli O157:H7, norovirus, and Salmonella during freshwater recreation in Ontario, Canada. METHODS A quantitative microbial risk assessment (QMRA) was conducted to estimate the number of AGI cases per 1000 recreational events associated with freshwater recreation. QMRA utilizes four steps: hazard identification, exposure assessment, dose-response modelling, and risk characterization. A probabilistic model was developed using the following inputs accounting for uncertainty and variability: published data on pathogen prevalence and concentration in freshwaters in Ontario (hazard identification), recreator water ingestion volumes (exposure), pathogen-specific dose-response models, and ratios between numbers of infections and symptomatic disease cases to estimate illness risks (risk characterization). RESULTS The mean estimated AGI risk associated with recreation ranged from 0.8 to 36.7 cases per 1000 swimmers (5th-95th probability interval: 0-226.3 cases/1000) which is in line with previous studies conducted in Lake Ontario, as well as prior QMRAs of freshwater recreation. Upper range predicted values exceeded the Health Canada guideline of less than 20 cases per 1000 recreators. CONCLUSION This study shows that QMRA can be used to estimate disease risk in the absence of large-scale epidemiological studies. The results demonstrate a range of risk that is in line with exposure to pristine (low risk estimates) and more contaminated waters (high risk estimates) and capture the potential risk to vulnerable populations.
Collapse
Affiliation(s)
- Henry Ngo
- Water, Health, and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - E Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Charlotte Winder
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Heather M Murphy
- Water, Health, and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Díaz SM, Barrios ME, Galli L, Cammarata RV, Torres C, Fortunato MS, García López G, Costa M, Sanguino Jorquera DG, Oderiz S, Rogé A, Gentiluomo J, Carbonari C, Rajal VB, Korol SE, Gallego A, Blanco Fernández MD, Mbayed VA. Microbiological hazard identification in river waters used for recreational activities. ENVIRONMENTAL RESEARCH 2024; 247:118161. [PMID: 38220078 DOI: 10.1016/j.envres.2024.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pathogenic bacteria, viruses, and parasites can cause waterborne disease outbreaks. The study of coastal water quality contributes to identifying potential risks to human health and to improving water management practices. The Río de la Plata River, a wide estuary in South America, is used for recreational activities, as a water source for consumption and as a site for sewage discharges. In the present study, as the first step of a quantitative microbial risk assessment of the coastal water quality of this river, a descriptive study was performed to identify the microbial pathogens prevalent in its waters and in the sewage discharged into the river. Two sites, representing two different potential risk scenarios, were chosen: a heavily polluted beach and an apparently safe beach. Conductivity and fecal contamination indicators including enterococci, Escherichia coli, F + RNA bacteriophages, and human polyomaviruses showed high levels. Regarding enterococci, differences between sites were significant (p-values <0.001). 93.3% and 56.5% of the apparently safe beach exceeded the recreational water limits for E. coli and enterococci. Regarding pathogens, diarrheagenic E. coli, Salmonella, and noroviruses were detected with different frequencies between sites. The parasites Cryptosporidium spp. and Giardia duodenalis were frequently detected in both sites. The results regarding viral, bacterial, and parasitic pathogens, even without correlation with conventional indicators, showed the importance of monitoring a variety of microorganisms to determine water quality more reliably and accurately, and to facilitate further studies of health risk assessment. The taxonomic description of microbial pathogens in river waters allow identifying the microorganisms that infect the population living on its shores but also pathogens not previously reported by the clinical surveillance system.
Collapse
Affiliation(s)
- Sofía Micaela Díaz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Galli
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Susana Fortunato
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guadalupe García López
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. Av. 60 y 118 (B1900), La Plata, Argentina
| | - Diego Gastón Sanguino Jorquera
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sebastian Oderiz
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Jimena Gentiluomo
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Carolina Carbonari
- Servicio Fisiopatogenia, Departamento Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563 (C1282AFF), Buenos Aires, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150 (A4408FVY), Salta, Argentina; Facultad de Ingeniería. UNSa, Av. Bolivia 5150 (A4408FVY), Salta, Argentina
| | - Sonia Edith Korol
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Gallego
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Junín 956 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Habrun CA, Birhane MG, François Watkins LK, Benedict K, Bottichio L, Nemechek K, Tolar B, Schroeder MN, Chen JC, Caidi H, Robyn M, Nichols M. Multistate nontyphoidal Salmonella and Shiga toxin-producing Escherichia coli outbreaks linked to international travel-United States, 2017-2020. Epidemiol Infect 2024; 152:e17. [PMID: 38204341 PMCID: PMC10894901 DOI: 10.1017/s0950268823002017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Enteric bacterial infections are common among people who travel internationally. During 2017-2020, the Centers for Disease Control and Prevention investigated 41 multistate outbreaks of nontyphoidal Salmonella and Shiga toxin-producing Escherichia coli linked to international travel. Resistance to one or more antimicrobial agents was detected in at least 10% of isolates in 16 of 30 (53%) nontyphoidal Salmonella outbreaks and 8 of 11 (73%) Shiga toxin-producing E. coli outbreaks evaluated by the National Antimicrobial Resistance Monitoring System. At least 10% of the isolates in 14 nontyphoidal Salmonella outbreaks conferred resistance to one or more of the clinically significant antimicrobials used in human medicine. This report describes the epidemiology and antimicrobial resistance patterns of these travel-associated multistate outbreaks. Investigating illnesses among returned travellers and collaboration with international partners could result in the implementation of public health interventions to improve hygiene practices and food safety standards and to prevent illness and spread of multidrug-resistant organisms domestically and internationally.
Collapse
Affiliation(s)
- Caroline A. Habrun
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Centers for Disease Control and Prevention, Epidemic Intelligence Service Program, Atlanta, GA, USA
| | - Meseret G. Birhane
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Louise K. François Watkins
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katharine Benedict
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lyndsay Bottichio
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kaylea Nemechek
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Beth Tolar
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Morgan N. Schroeder
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica C. Chen
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hayat Caidi
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Misha Robyn
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Megin Nichols
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Digaletos M, Ptacek CJ, Thomas J, Liu Y. Chemical and biological tracers to identify source and transport pathways of septic system contamination to streams in areas with low permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161866. [PMID: 36709906 DOI: 10.1016/j.scitotenv.2023.161866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Septic systems are widely used in rural areas that lack centralized sewage treatment systems. Incomplete removal of domestic wastewater contaminants in septic systems can lead to leaching of nutrients (P and N), bacteria/viruses, and trace contaminants to surrounding groundwater and surface water. This study focuses on delineating the fate of wastewater contaminants in localities where septic systems are installed in moderate to fine-grained overburden materials to assess potential impacts on groundwater and surface water quality in these settings. Nutrients and a suite of anthropogenic tracers, including host-specific fecal indicator bacteria (bovine- and human-specific Bacteroides), pharmaceutical compounds (caffeine, carbamazepine, gemfibrozil, ibuprofen, naproxen, and sulfamethoxazole), and an artificial sweetener (acesulfame-K), were selected to evaluate differences in transport properties. Surface water samples (n = 103) were collected from streams upstream (US) and downstream (DS) of three rural hamlets up to two times monthly over one year. Results indicate the presence of wastewater indicators in the streams, with DS locations showing significantly elevated concentrations of both chemical and biological anthropogenic tracers. Human-specific Bacteroides, caffeine, and acesulfame-K were consistently observed at elevated concentrations at all DS sites. Nutrients exhibited varied concentrations between US and DS locations at three study sites. The occurrence of human-specific Bacteroides in the surface water samples suggests the presence of preferential flow pathways within the silt/clay overburden. These results demonstrate the advantages of using a combined tracer approach, involving a conservative tracer such as acesulfame-K coupled with the human-specific biological indicator Bacteroides (BacHum), to understand not only impacting sources but also potential transport pathways of septic system contamination to nearby streams. Septic systems may be an underappreciated contaminant source in rural hamlets located in fine-grained overburden materials; although, a distinction of specific nutrient sources (septic systems vs. agriculture) remains challenging.
Collapse
Affiliation(s)
- Maria Digaletos
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Janis Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd., Toronto, Ontario M9P 3V6, Canada; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|