1
|
de Carvalho Costa LR, Li L, Haak L, Teel L, Feris LA, Marchand E, Pagilla KR. Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale. CHEMOSPHERE 2024; 364:143128. [PMID: 39159769 DOI: 10.1016/j.chemosphere.2024.143128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 μg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 μg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.
Collapse
Affiliation(s)
- Leticia Reggiane de Carvalho Costa
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, 89502, USA
| | - Liliana Amaral Feris
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Eric Marchand
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
| |
Collapse
|
2
|
Yalin D, Craddock HA, Assouline S, Ben Mordechay E, Ben-Gal A, Bernstein N, Chaudhry RM, Chefetz B, Fatta-Kassinos D, Gawlik BM, Hamilton KA, Khalifa L, Kisekka I, Klapp I, Korach-Rechtman H, Kurtzman D, Levy GJ, Maffettone R, Malato S, Manaia CM, Manoli K, Moshe OF, Rimelman A, Rizzo L, Sedlak DL, Shnit-Orland M, Shtull-Trauring E, Tarchitzky J, Welch-White V, Williams C, McLain J, Cytryn E. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. WATER RESEARCH X 2023; 21:100203. [PMID: 38098886 PMCID: PMC10719582 DOI: 10.1016/j.wroa.2023.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.
Collapse
Affiliation(s)
- David Yalin
- A Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hillary A. Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Assouline
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Evyatar Ben Mordechay
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) – The Volcani Institute, Gilat Reseach Center, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Benny Chefetz
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Bernd M. Gawlik
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Kerry A. Hamilton
- The School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Isaya Kisekka
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - Iftach Klapp
- Institute of Agricultural engineering, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Daniel Kurtzman
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Guy J. Levy
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Roberta Maffettone
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Sixto Malato
- CIEMAT-Plataforma Solar de Almería, Ctra. Sen´es km 4, 04200 Tabernas, Almería, Spain
| | - Célia M. Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Kyriakos Manoli
- NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Orah F. Moshe
- Department of Soil Conservation, Soil Erosion Research Center, Ministry of Agriculture, Rishon LeZion, Israel
| | - Andrew Rimelman
- PG Environmental. 1113 Washington Avenue, Suite 200. Golden, CO 80401, USA
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - David L. Sedlak
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Maya Shnit-Orland
- Extension Service, Ministry of Agriculture and Rural Development, Israel
| | - Eliav Shtull-Trauring
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Jorge Tarchitzky
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Clinton Williams
- US Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, USA
| | - Jean McLain
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Jung Y, Abney SE, Reynolds KA, Gerba CP, Wilson AM. Evaluating infection risks and importance of hand hygiene during the household laundry process using a quantitative microbial risk assessment approach. Am J Infect Control 2023; 51:1377-1383. [PMID: 37271422 DOI: 10.1016/j.ajic.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Contaminated laundry contributes to infectious disease spread in residential and home health care settings. The objectives were to (1) evaluate pathogen transmission risks for individuals doing laundry, and (2) compare hand hygiene timing to reduce risks. METHODS A quantitative microbial risk assessment using experimental data from a laundry washing effectiveness study was applied to estimate infection risks from SARS-CoV-2, rotavirus, norovirus, nontyphoidal Salmonella, and Escherichia coli in 4 laundry scenarios: 1 baseline scenario (no hand hygiene event) and 3 hand hygiene scenarios (scenario 1: after moving dirty clothes to the washing machine, scenario 2: after moving washed clothes to the dryer, and scenario 3: hand hygiene events following scenario 1 and 2). RESULTS The average infection risks for the baseline scenario were all greater than 2 common risk thresholds (1.0×10-6and 1.0×10-4). For all organisms, scenario 1 yielded greater risk reductions (39.95%-99.86%) than scenario 2 (1.35%-55.25%). Scenario 3 further reduced risk, achieving 1.0×10-6(SARS-CoV-2) and 1.0×10-4risk thresholds (norovirus and E. coli). CONCLUSIONS The modeled results suggest individuals should reduce hand-to-facial orifice (eyes, nose, and mouth) contacts and conduct proper hand hygiene when handling contaminated garments. More empirical data are needed to confirm the estimated risks. DATA AVAILABILITY STATEMENT The data and code that support the findings of this study can be retrieved via a Creative Commons Zero v1.0 Universal license in GitHub at https://github.com/yhjung1231/Laundry-QMRAproject-2022.git DOI: http://doi.org/10.5281/zenodo.7122065.
Collapse
Affiliation(s)
- Yoonhee Jung
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, AZ, USA.
| | - Sarah E Abney
- García-Robles Fulbright Program, Centro de Investigación Científica de Yucatán, Yucatán, Mexico
| | - Kelly A Reynolds
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, AZ, USA
| | - Charles P Gerba
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, AZ, USA
| | - Amanda M Wilson
- Department of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, AZ, USA
| |
Collapse
|
4
|
González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Mora Alvarado D, Cantor A, Breitbart M, Cairns MR, Harwood VJ. Risk of Gastroenteritis from Swimming at a Wastewater-Impacted Tropical Beach Varies across Localized Scales. Appl Environ Microbiol 2023; 89:e0103322. [PMID: 36847564 PMCID: PMC10057883 DOI: 10.1128/aem.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Population growth and changing climate are expected to increase human exposure to pathogens in tropical coastal waters. We examined microbiological water quality in three rivers within 2.3 km of each other that impact a Costa Rican beach and in the ocean outside their plumes during the rainy and dry seasons. We performed quantitative microbial risk assessment (QMRA) to predict the risk of gastroenteritis associated with swimming and the amount of pathogen reduction needed to achieve safe conditions. Recreational water quality criteria based on enterococci were exceeded in >90% of river samples but in only 13% of ocean samples. Multivariate analysis grouped microbial observations by subwatershed and season in river samples but only by subwatershed in the ocean. The modeled median risk from all pathogens in river samples was between 0.345 and 0.577, 10-fold above the U.S. Environmental Protection Agency (U.S. EPA) benchmark of 0.036 (36 illnesses/1,000 swimmers). Norovirus genogroup I (NoVGI) contributed most to risk, but adenoviruses raised risk above the threshold in the two most urban subwatersheds. The risk was greater in the dry compared to the rainy season, due largely to the greater frequency of NoVGI detection (100% versus 41%). Viral log10 reduction needed to ensure safe swimming conditions varied by subwatershed and season and was greatest in the dry season (3.8 to 4.1 dry; 2.7 to 3.2 rainy). QMRA that accounts for seasonal and local variability of water quality contributes to understanding the complex influences of hydrology, land use, and environment on human health risk in tropical coastal areas and can contribute to improved beach management. IMPORTANCE This holistic investigation of sanitary water quality at a Costa Rican beach assessed microbial source tracking (MST) marker genes, pathogens, and indicators of sewage. Such studies are still rare in tropical climates. Quantitative microbial risk assessment (QMRA) found that rivers impacting the beach consistently exceeded the U.S. EPA risk threshold for gastroenteritis of 36/1,000 swimmers. The study improves upon many QMRA studies by measuring specific pathogens, rather than relying on surrogates (indicator organisms or MST markers) or estimating pathogen concentrations from the literature. By analyzing microbial levels and estimating the risk of gastrointestinal illness in each river, we were able to discern differences in pathogen levels and human health risks even though all rivers were highly polluted by wastewater and were located less than 2.5 km from one another. This variability on a localized scale has not, to our knowledge, previously been demonstrated.
Collapse
Affiliation(s)
| | - Erin M. Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | | | - Bonnie Mull
- BCS Laboratories, Inc., Gainesville, Florida, USA
| | | | - Pablo Rivera Navarro
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Andrei Badilla Aguilar
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Darner Mora Alvarado
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Allison Cantor
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Maryann R. Cairns
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|