1
|
Liao Z, Laurent N, Hirt-Burri N, Scaletta C, Abdel-Sayed P, Raffoul W, Luo S, Krysan DJ, Laurent A, Applegate LA. Sustainable Primary Cell Banking for Topical Compound Cytotoxicity Assays: Protocol Validation on Novel Biocides and Antifungals for Optimized Burn Wound Care. EUROPEAN BURN JOURNAL 2024; 5:249-270. [PMID: 39599948 PMCID: PMC11544888 DOI: 10.3390/ebj5030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 11/29/2024]
Abstract
Thorough biological safety testing of topical therapeutic compounds and antimicrobials is a critical prerequisite for appropriate cutaneous wound care. Increasing pathogen resistance rates to traditional antibiotics and antifungals are driving the development and registration of novel chemical entities. Although they are notably useful for animal testing reduction, the gold standard in vitro cytotoxicity assays in continuous cell lines (HaCaT keratinocytes, 3T3 fibroblasts) may be discussed from a translational relevance standpoint. The aim of this study was thus to establish and validate a sustainable primary cell banking model with a view to performing optimized in vitro cytotoxicity assay development. Primary dermal fibroblasts and adipose-derived stem cell (ASC) types were established from four infant polydactyly sources. A multi-tiered primary cell banking model was then applied to prepare highly sustainable and standardized dermal fibroblast and ASC working cell banks (WCBs), potentially allowing for millions of biological assays to be performed. The obtained cellular materials were then validated for use in cytotoxicity assays through in vitro biosafety testing of topical antiseptics (chlorhexidine, hypochlorous acid) and an antifungal compound (AR-12) of interest for optimized burn wound care. The experimental results confirmed that IC50 values were comparable between cytotoxicity assays, which were performed with cell lines and with primary cells. The results also showed that hypochlorous acid (HOCl) displayed an enhanced toxicological profile as compared to the gold standard chlorhexidine (CLX). Generally, this study demonstrated that highly sustainable primary cell sources may be established and applied for consistent topical compound biological safety assessments with enhanced translational relevance. Overall, the study underscored the safety-oriented interest of functionally benchmarking the products that are applied on burn patient wounds for the global enhancement of burn care quality.
Collapse
Affiliation(s)
- Zhifeng Liao
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
| | - Nicolas Laurent
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
| | - Nathalie Hirt-Burri
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Corinne Scaletta
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- STI School of Engineering, Federal Polytechnical School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland;
| | - Shengkang Luo
- Plastic and Reconstructive Surgery, Guangdong Second Provential General Hospital, Guangzhou 510317, China;
| | - Damian J. Krysan
- Stead Family Department of Pediatrics, Carver College of Medicine, Stead Family Children’s Hospital, University of Iowa, Iowa City, IA 52242, USA;
| | - Alexis Laurent
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (Z.L.); (N.L.); (N.H.-B.); (C.S.); (P.A.-S.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| |
Collapse
|
2
|
Kubo M, Eda R, Maehana S, Fuketa H, Shinkai N, Kawamura N, Kitasato H, Hanaki H. Virucidal efficacy of hypochlorous acid water for aqueous phase and atomization against SARS-CoV-2. JOURNAL OF WATER AND HEALTH 2024; 22:601-611. [PMID: 38557574 DOI: 10.2166/wh.2024.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.
Collapse
Affiliation(s)
- Makoto Kubo
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan E-mail:
| | - Ryotaro Eda
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shotaro Maehana
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiroshi Fuketa
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Norihiro Shinkai
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Naohisa Kawamura
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, The Omura Satoshi Memorial Institution, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Gessi A, Formaglio P, Semeraro B, Summa D, Tamisari E, Tamburini E. Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6712. [PMID: 37754572 PMCID: PMC10530460 DOI: 10.3390/ijerph20186712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Recently, the use of disinfectants has been becoming a diffused and sometimes indiscriminate practice of paramount importance to limit the spreading of infections. The control of microbial contamination has now been concentrated on the use of traditional agents (i.e., hypochlorite, ozone). However, their prolonged use can cause potential treats, for both human health and environment. Currently, low-impact but effective biocides that are prepared in a way that avoids waste, with a very low toxicity, and safe and easy to handle and store are strongly needed. In this study, produced electrochemically activated hypochlorous (HOCl) acid solutions are investigated and proposed, integrated in a scrubbing machine for floor cleaning treatment. Such an innovative machine has been used for floor cleaning and sanitation in order to evaluate the microbial charge and organic dirt removal capacity of HOCl in comparison with a machine charged with traditional Ecolabel standard detergent. The potential damage on floor materials has also been investigated by means of Scanning Electron Microscope (SEM). A comparative Life Cycle Assessment (LCA) analysis has been carried out for evaluating the sustainability of the use of the HOCl-based and detergent-based machine.
Collapse
Affiliation(s)
- Alessandro Gessi
- ENEA Research Center, SSPT-MET-DISPREV, Via Martiri di Montesole, 40129 Bologna, Italy;
| | - Paolo Formaglio
- GATEGREEN Srl, Via Armari 9, 44121 Ferrara, Italy; (P.F.); (B.S.)
- Department of Chemical, Pharmaceutical and Agrarian Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Bruno Semeraro
- GATEGREEN Srl, Via Armari 9, 44121 Ferrara, Italy; (P.F.); (B.S.)
| | - Daniela Summa
- Department of Chemical, Pharmaceutical and Agrarian Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Elena Tamisari
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
4
|
Virucidal Activities of Acidic Electrolyzed Water Solutions with Different pH Values against Multiple Strains of SARS-CoV-2. Appl Environ Microbiol 2023; 89:e0169922. [PMID: 36511659 PMCID: PMC9888296 DOI: 10.1128/aem.01699-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a threat to human health. Acidic electrolyzed water (AEW) has recently been suggested to demonstrate virucidal activity. Many types of AEW with different pH values, generated by the electrolysis of different chemicals, such as sodium chloride, potassium chloride, and hydrochloric acid, are commercially available. In this study, we compared the virucidal activities of these types of AEW against SARS-CoV-2, including the ancestral strain and variant Alpha, Beta, Gamma, Delta, and Omicron strains. Virus solution (viral titer, 6.9 log10 50% tissue culture infective dose [TCID50]/mL) was mixed with AEW (free available chlorine concentration, 34.5 ppm) at mixing ratios of 1:9, 1:19, and 1:49. At mixing ratios of 1:9 and 1:19, AEW with a pH of 2.8 showed stronger virucidal activities than AEW with a pH of 4.1 to 6.5 against the SARS-CoV-2 ancestral strain in 20 s. From the strongest to the weakest virucidal activity, the AEW pH levels were as follows: pH 2.8, pH 4.1 to 5.4, pH 6.4 to 6.5. At a ratio of 1:49, the viral titers of viruses treated with all AEW solutions at pH 2.8 to 6.5 were almost below the detection limit, which was 1.25 log10 TCID50/mL. The virus inactivation efficiency of AEW was reduced in the presence of fetal bovine serum and other substances contained in the virus solution used in this study. AEW with pH values of 2.8 to 6.5 showed virucidal activity against all of the tested SARS-CoV-2 strains, including the ancestral and variant strains. These results provide useful knowledge for the effective application of AEW as a SARS-CoV-2 disinfectant. IMPORTANCE Acidic electrolyzed water (AEW) demonstrates virucidal activity against multiple viruses. Since AEW exhibits low toxicity, is inexpensive, and is environmentally friendly, it can be a useful disinfectant against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the pH values of currently available AEW products vary, the impact of different pH values on SARS-CoV-2 inactivation has not previously been evaluated in detail. In this study, we compared the virucidal activities of multiple AEW solutions with different pH values, under the same experimental conditions. We found that AEW solutions with lower pH values demonstrated more potent virucidal activity. Also, we showed that the extent of virus inactivation by the AEW was based on the balance of the abundance of free available chlorine, virus, and other organic substances in the mixture. AEW exhibited rapid virucidal activity against multiple SARS-CoV-2 strains. This study demonstrated the usefulness of AEW as a disinfectant which can be applied to the inactivation of SARS-CoV-2.
Collapse
|
5
|
Murashevych B, Stepanskyi D, Toropin V, Mironenko A, Maslak H, Burmistrov K, Teteriuk N. Virucidal properties of new multifunctional fibrous N-halamine-immobilized styrene-divinylbenzene copolymers. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Virucidal properties of N-chlorosulfonamides immobilized on fibrous styrene-divinylbenzene copolymers have been studied. Corresponding materials with different functional group structures and chlorine content have been synthesized on FIBAN polymer carriers in the form of staple fibers and non-woven fabrics. The study has been conducted in general accordance with EN 14476 standard on poliovirus type-1 and adenovirus type-5. It has been found that all tested samples exhibit pronounced virucidal activity: regardless of the carrier polymer form, sodium N-chlorosulfonamides inactivated both viruses in less than 30 s, and N,N-dichlorosulfonamides—in 30–60 s. The main mechanism of action of these materials, obviously, consists in the emission of active chlorine from the functional group into the treated medium under the action of the amino groups of virus fragments and cell culture. Considering the previously described antimicrobial and reparative properties of such materials, as well as their satisfactory physical and mechanical properties, the synthesized polymers are promising for the creation of medical devices with increased resistance to microbial contamination, such as protective masks, filter elements, long-acting wound dressings, and others.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmytro Stepanskyi
- Department of Microbiology, Virology, Immunology and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Toropin
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Alla Mironenko
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Konstantin Burmistrov
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Nataliia Teteriuk
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| |
Collapse
|
6
|
Takeda Y, Jamsransuren D, Makita Y, Kaneko A, Matsuda S, Ogawa H, Oh H. Inactivation Activities of Ozonated Water, Slightly Acidic Electrolyzed Water and Ethanol against SARS-CoV-2. Molecules 2021; 26:5465. [PMID: 34576934 PMCID: PMC8471879 DOI: 10.3390/molecules26185465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to compare the SARS-CoV-2-inactivation activity and virucidal mechanisms of ozonated water (OW) with those of slightly acidic electrolyzed water (SAEW) and 70% ethanol (EtOH). SARS-CoV-2-inactivation activity was evaluated in a virus solution containing 1%, 20% or 40% fetal bovine serum (FBS) with OW, SAEW or EtOH at a virus-to-test solution ratio of 1:9, 1:19 or 1:99 for a reaction time of 20 s. EtOH showed the strongest virucidal activity, followed by SAEW and OW. Even though EtOH potently inactivated the virus despite the 40% FBS concentration, virus inactivation by OW and SAEW decreased in proportion to the increase in FBS concentration. Nevertheless, OW and SAEW showed potent virucidal activity with 40% FBS at a virus-to-test solution ratio of 1:99. Real-time PCR targeting the viral genome revealed that cycle threshold values in the OW and SAEW groups were significantly higher than those in the control group, suggesting that OW and SAEW disrupted the viral genome. Western blotting analysis targeting the recombinant viral spike protein S1 subunit showed a change in the specific band into a ladder upon treatment with OW and SAEW. OW and SAEW may cause conformational changes in the S1 subunit of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan;
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuha Hanazono Hirakata, Osaka 573-1121, Japan;
| | - Akihiro Kaneko
- Department of Oral Surgery, Ikegami General Hospital, 6-1-19 Ikegami Ootaku, Tokyo 146-8531, Japan;
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Hourei Oh
- Center of Innovation in Dental Education, Osaka Dental University, 8-1 Kuzuha Hanazono Hirakata, Osaka 573-1121, Japan
| |
Collapse
|