1
|
Khatun MF, Reza AHMS, Sattar GS, Khan AS, Khan MIA. Prediction of arsenic concentration in groundwater of Chapainawabganj, Bangladesh: machine learning-based approach to spatial modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46023-46037. [PMID: 38980486 DOI: 10.1007/s11356-024-34148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Groundwater in northwestern parts of Bangladesh, mainly in the Chapainawabganj District, has been contaminated by arsenic. This research documents the geographical distribution of arsenic concentrations utilizing machine learning techniques. The study aims to enhance the accuracy of model predictions by precisely identifying occurrences of groundwater arsenic, enabling effective mitigation actions and yielding more beneficial results. The reductive dissolution of arsenic-rich iron oxides/hydroxides is identified as the primary mechanism responsible for the release of arsenic from sediment into groundwater. The study reveals that in the research region, alongside elevated arsenic concentrations, significant levels of sodium (Na), iron (Fe), manganese (Mn), and calcium (Ca) were present. Statistical analysis was employed for feature selection, identifying pH, electrical conductivity (EC), sulfate (SO4), nitrate (NO3), Fe, Mn, Na, K, Ca, Mg, bicarbonate (HCO3), phosphate (PO4), and As as features closely associated with arsenic mobilization. Subsequently, various machine learning models, including Naïve Bayes, Random Forest, Support Vector Machine, Decision Tree, and logistic regression, were employed. The models utilized normalized arsenic concentrations categorized as high concentration (HC) or low concentration (LC), along with physiochemical properties as features, to predict arsenic occurrences. Among all machine learning models, the logistic regression and support vector machine models demonstrated high performance based on accuracy and confusion matrix analysis. In this study, a spatial distribution prediction map was generated to identify arsenic-prone areas. The prediction map also displays that Baroghoria Union and Rajarampur region under Chapainawabganj municipality are high-risk areas and Maharajpur Union and Baliadanga Union are comparatively low-risk areas of the research area. This map will facilitate researchers and legislators in implementing mitigation strategies. Logistic regression (LR) and support vector machine (SVM) models will be utilized to monitor arsenic concentration values continuously.
Collapse
Affiliation(s)
- Mst Fatima Khatun
- Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh
| | - A H M Selim Reza
- Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh.
| | - Golam Sabbir Sattar
- Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Md Iqbal Aziz Khan
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
2
|
Kumar A, Kumar S, Rautela KS, Kumari A, Shekhar S, Thangavel M. Exploring temperature dynamics in Madhya Pradesh: a spatial-temporal analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1313. [PMID: 37831219 DOI: 10.1007/s10661-023-11884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Understanding the dynamics of temperature trends is vital for assessing the impacts of climate change on a regional scale. In this context, the present study focuses on Madhya Pradesh state in Central Indian region to explore the spatial-temporal distribution patterns of temperature changes from 1951 to 2021. Gridded temperature data obtained from the Indian Meteorological Department (IMD) in 1° × 1° across the state are utilised to analyse long-term trends and variations in temperature. The Mann-Kendall (MK) test and Sen's slope (SS) estimator were used to detect the trends, and Pettitt's test was utilised for change point detection. The analysis reveals significant warming trends in Madhya Pradesh during the study period during specific time frames. The temperature variables, such as the annual mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin), consistently increase, with the most pronounced warming observed during winter. The trend analysis reveals that the rate of warming has increased in the past few years, particularly since the 1990s. However, Pettitt's test points out significant changes in the temperature, with Tmean rising from 25.46 °C in 1951-2004 to 25.78 °C in 2005-2021 (+0.33 °C), Tmax shifting from 45.77 °C in 1951-2010 to 46.24 °C in 2011-2021 (+0.47°C), and Tmin increasing from 2.65 °C in 1951-1999 to 3.19 °C in 2000-2021 (+0.46 °C). These results, along with spatial-temporal distribution maps, shed important light on the alterations and variations in monthly Tmean, Tmax, and Tmin across the area, underlining the dynamic character of climate change and highlighting the demand for methods for adaptation and mitigation.
Collapse
Affiliation(s)
- Amit Kumar
- School of Humanaties and Social Science, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Siddharth Kumar
- Department of Computer Science & Engineering, Indian Institute of Information Technology, Ranchi, Jharkhand, 834010, India
| | - Kuldeep Singh Rautela
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Aksara Kumari
- M.A. Geography, Nalanda Open University, Patna, Bihar, 800001, India
| | - Sulochana Shekhar
- Department of Geography, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Mohanasundari Thangavel
- School of Humanaties and Social Science, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
3
|
Chattopadhyay A, Singh AP, Kumar S, Pati J, Rakshit A. The machine learning and geostatistical approach for assessment of arsenic contamination levels using physicochemical properties of water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:595-614. [PMID: 37578877 PMCID: wst_2023_231 DOI: 10.2166/wst.2023.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Arsenic contamination in groundwater due to natural or anthropogenic sources is responsible for carcinogenic and non-carcinogenic risks to humans and the ecosystem. The physicochemical properties of groundwater in the study area were determined in the laboratory using the samples collected across the Varanasi region of Uttar Pradesh, India. This paper analyses the physicochemical properties of water using machine learning, descriptive statistics, geostatistical and spatial analysis. Pearson correlation was used for feature selection and highly correlated features were selected for model creation. Hydrochemical facies of the study area were analyzed and the hyperparameters of machine learning models, i.e., multilayer perceptron, random forest (RF), naïve Bayes, and decision tree were optimized before training and testing the groundwater samples as high (1) or low (0) arsenic contamination levels based on the WHO 10 μg/L guideline value. The overall performance of the models was compared based on accuracy, sensitivity, and specificity value. Among all models, the RF algorithm outclasses other classifiers, as it has a high accuracy of 92.30%, a sensitivity of 100%, and a specificity of 75%. The accuracy result was compared to prior research, and the machine learning model may be used to continually monitor the amount of arsenic pollution in groundwater.
Collapse
Affiliation(s)
- Arghya Chattopadhyay
- Department of Soil Science & Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India E-mail:
| | - Anand Prakash Singh
- Department of Soil Science & Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddharth Kumar
- Department of Computer Science & Engineering, Indian Institute of Information Technology Ranchi, Ranchi, Jharkhand 834010, India
| | - Jayadeep Pati
- Department of Computer Science & Engineering, Indian Institute of Information Technology Ranchi, Ranchi, Jharkhand 834010, India
| | - Amitava Rakshit
- Department of Soil Science & Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Tselemponis A, Stefanis C, Giorgi E, Kalmpourtzi A, Olmpasalis I, Tselemponis A, Adam M, Kontogiorgis C, Dokas IM, Bezirtzoglou E, Constantinidis TC. Coastal Water Quality Modelling Using E. coli, Meteorological Parameters and Machine Learning Algorithms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6216. [PMID: 37444064 PMCID: PMC10341787 DOI: 10.3390/ijerph20136216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
In this study, machine learning models were implemented to predict the classification of coastal waters in the region of Eastern Macedonia and Thrace (EMT) concerning Escherichia coli (E. coli) concentration and weather variables in the framework of the Directive 2006/7/EC. Six sampling stations of EMT, located on beaches of the regional units of Kavala, Xanthi, Rhodopi, Evros, Thasos and Samothraki, were selected. All 1039 samples were collected from May to September within a 14-year follow-up period (2009-2021). The weather parameters were acquired from nearby meteorological stations. The samples were analysed according to the ISO 9308-1 for the detection and the enumeration of E. coli. The vast majority of the samples fall into category 1 (Excellent), which is a mark of the high quality of the coastal waters of EMT. The experimental results disclose, additionally, that two-class classifiers, namely Decision Forest, Decision Jungle and Boosted Decision Tree, achieved high Accuracy scores over 99%. In addition, comparing our performance metrics with those of other researchers, diversity is observed in using algorithms for water quality prediction, with algorithms such as Decision Tree, Artificial Neural Networks and Bayesian Belief Networks demonstrating satisfactory results. Machine learning approaches can provide critical information about the dynamic of E. coli contamination and, concurrently, consider the meteorological parameters for coastal waters classification.
Collapse
Affiliation(s)
- Athanasios Tselemponis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Christos Stefanis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Elpida Giorgi
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Aikaterini Kalmpourtzi
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Ioannis Olmpasalis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Antonios Tselemponis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Maria Adam
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Ioannis M. Dokas
- Department of Civil Engineering, Democritus University of Thrace, 69100 Komotini, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| | - Theodoros C. Constantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (A.T.); (E.G.); (A.K.); (I.O.); (A.T.); (M.A.); (C.K.); (E.B.); (T.C.C.)
| |
Collapse
|
5
|
Kumar S, Pati J. Machine learning approach for assessment of arsenic levels using physicochemical properties of water, soil, elevation, and land cover. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:641. [PMID: 37145302 DOI: 10.1007/s10661-023-11231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Groundwater is an essential resource; around 2.5 billion people depend on it for drinking and irrigation. Groundwater arsenic contamination is due to natural and anthropogenic sources. The World Health Organization (WHO) has proposed a guideline value for arsenic concentration in groundwater samples of 10[Formula: see text]g/L. Continuous consumption of arsenic-contaminated water causes various carcinogenic and non-carcinogenic health risks. In this paper, we introduce a geospatial-based machine learning method for classifying arsenic concentration levels as high (1) or low (0) using physicochemical properties of water, soil type, land use land cover, digital elevation, subsoil sand, silt, clay, and organic content of the region. The groundwater samples were collected from multiple sites along the river Ganga's banks of Varanasi district in Uttar Pradesh, India. The dataset was subjected to descriptive statistics and spatial analysis for all parameters. This study assesses the various contributing parameters responsible for the occurrence of arsenic in the study area based on the Pearson correlation feature selection method. The performance of machine learning models, i.e., Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Decision Tree, Random Forest, Naïve Bayes, and Deep Neural Network (DNN), were compared to validate the parameters responsible for the dissolution of arsenic in groundwater aquifers. Among all the models, the DNN algorithm outclasses other classifiers as it has a high accuracy of 92.30%, a sensitivity of 100%, and a specificity of 75%. Policymakers can utilize the accuracy of the DNN model to approximate individuals prone to arsenic poisoning and formulate mitigation strategies based on spatial maps.
Collapse
Affiliation(s)
- Siddharth Kumar
- Department of Computer Science and Engineering, Indian Institute of Information Technology Ranchi, Namkum, Ranchi, 834010, Jharkhand, India.
| | - Jayadeep Pati
- Department of Computer Science and Engineering, Indian Institute of Information Technology Ranchi, Namkum, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
6
|
Haggerty R, Sun J, Yu H, Li Y. Application of machine learning in groundwater quality modeling - A comprehensive review. WATER RESEARCH 2023; 233:119745. [PMID: 36812816 DOI: 10.1016/j.watres.2023.119745] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic. Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management.
Collapse
Affiliation(s)
- Ryan Haggerty
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jianxin Sun
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Hongfeng Yu
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Yusong Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|