1
|
Mvundura M, Ngwira LG, Shrestha KB, Tuladhar R, Gauld J, Kerr C, Barnes K, Anscombe C, Sharma B, Feasey N. Cost-effectiveness of wastewater-based environmental surveillance for SARS-CoV-2 in Blantyre, Malawi and Kathmandu, Nepal: A model-based study. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004439. [PMID: 40273116 PMCID: PMC12021199 DOI: 10.1371/journal.pgph.0004439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Wastewater-based environmental surveillance (ES) has been demonstrated to provide an early warning signal to predict variant-driven waves of pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our study evaluated the potential cost-effectiveness of ES for SARS-CoV-2 compared with clinical testing alone. We used the Covasim agent-based model of COVID-19 to simulate disease transmission for hypothetical populations in Blantyre, Malawi, and Kathmandu, Nepal. We simulated the introduction of a new immune-escaping variant over 6 months and estimated health outcomes (cases, deaths, and disability-adjusted life years [DALYs]) and economic impact when using ES to trigger a moderate proactive behavioral intervention (e.g., increased use of masks, social distancing) by policymakers versus no ES and hence a delayed reactive intervention. Costs considered included for ES, clinical testing, treatment, and productivity loss for the entire population due to implementation of the behavioral intervention. We calculated the incremental cost-effectiveness ratios and compared these with local willingness-to-pay thresholds: $61 for Malawi and $249 for Nepal. We performed sensitivity analyses to evaluate the impact of key assumptions on the results. Costs are reported in 2022 US dollars. We estimate that if ES were implemented, approximately 600 DALYs would be averted in Blantyre and approximately 300 DALYs averted in Kathmandu, over the six-month period. Considering health system costs, ES was cost-effective in Blantyre and cost-saving in Kathmandu. Cost-effectiveness of ES was highest in settings with low clinical surveillance, high disease severity, and high intervention effectiveness. However, from the societal perspective, ES may not be cost-effective depending on the magnitude of population-wide productivity losses associated with the proactive behavioral intervention and the cost-effectiveness threshold. SARS-CoV-2 ES has the potential to be a cost-saving or cost-effective tool from the health system perspective when linked to an effective public health response. From the societal perspective, however, the length of the behavioral intervention and its consequences for productivity losses of the entire population may make ES not cost-effective. Implementing ES for multiple pathogens may improve its cost-effectiveness.
Collapse
Affiliation(s)
- Mercy Mvundura
- Medical Devices and Health Technologies, PATH, Seattle, Washington, United States of America
| | - Lucky G. Ngwira
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Health Economics and Policy Unit, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Jillian Gauld
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Cliff Kerr
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Kayla Barnes
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Broad Institute, Boston, Massachusetts, United States of America
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Catherine Anscombe
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Bhawana Sharma
- Environment and Public Health Organisation, Kathmandu, Nepal
| | - Nicholas Feasey
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
2
|
Kamalrathne T, Amaratunga D, Haigh R, Kodituwakku L, Rupasinghe C. Epidemic and Pandemic Preparedness and Response in a Multi-Hazard Context: COVID-19 Pandemic as a Point of Reference. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1238. [PMID: 39338121 PMCID: PMC11431425 DOI: 10.3390/ijerph21091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Infectious diseases manifesting in the form of epidemics or pandemics do not only cause devastating impacts on public health systems but also disrupt the functioning of the socio-economic structure. Further, risks associated with pandemics and epidemics become exacerbated with coincident compound hazards. This study aims to develop a framework that captures key elements and components of epidemic and pandemic preparedness and response systems, focusing on a multi-hazard context. A systematic literature review was used to collect data through peer-reviewed journal articles using three electronic databases, and 17 experts were involved in the validation. Epidemiological surveillance and early detection, risk and vulnerability assessments, preparedness, prediction and decision making, alerts and early warning, preventive strategies, control and mitigation, response, and elimination were identified as key elements associated with epidemic and pandemic preparedness and response systems in a multi-hazard context. All elements appear integrated within three interventional phases: upstream, interface, and downstream. A holistic approach focusing on all interventional phases is required for preparedness and response to pandemics and epidemics to counter their cascading and systemic effects. Further, a paradigm shift in the preparedness for multi-hazards during an epidemic or pandemic is essential due to the multiple challenges posed by concurrent hazards.
Collapse
Affiliation(s)
- Thushara Kamalrathne
- Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Dilanthi Amaratunga
- Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Richard Haigh
- Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | | | | |
Collapse
|
3
|
Engebretsen S, Aldrin M. Effect of testing criteria for infectious disease surveillance: The case of COVID-19 in Norway. PLoS One 2024; 19:e0308978. [PMID: 39146327 PMCID: PMC11326602 DOI: 10.1371/journal.pone.0308978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/03/2024] [Indexed: 08/17/2024] Open
Abstract
During the COVID-19 pandemic in Norway, the testing criteria and capacity changed numerous times. In this study, we aim to assess consequences of changes in testing criteria for infectious disease surveillance. We plotted the proportion of positive PCR tests and the total number of PCR tests for different periods of the pandemic in Norway. We fitted regression models for the total number of PCR tests and the probability of positive PCR tests, with time and weekday as explanatory variables. The regression analysis focuses on the time period until 2021, i.e. before Norway started vaccination. There were clear changes in testing criteria and capacity over time. In particular, there was a marked difference in the testing regime before and after the introduction of self-testing, with a drastic increase in the proportion of positive PCR tests after the introduction of self-tests. The probability of a PCR test being positive was higher for weekends and public holidays than for Mondays-Fridays. The probability for a positive PCR test was lowest on Mondays. This implies that there were different testing criteria and/or different test-seeking behaviour on different weekdays. Though the probability of testing positive clearly changed over time, we cannot in general conclude that this occurred as a direct consequence of changes in testing policies. It is natural for the testing criteria to change during a pandemic. Though smaller changes in testing criteria do not seem to have large, abrupt consequences for the disease surveillance, larger changes like the introduction and massive use of self-tests makes the test data less useful for surveillance.
Collapse
|
4
|
Zambre S, Katarmal P, Pawar S, Dawkhar S, Iyer P, Rajput V, Kadam P, Bhalerao U, Tupekar M, Shah P, Karmodiya K, Dharne M, Roy B, Koraktar S. Wastewater surveillance of severe acute respiratory syndrome coronavirus-2 in open drains of two Indian megacities captures evolutionary lineage transitions: a zonation approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49670-49681. [PMID: 39078552 DOI: 10.1007/s11356-024-34448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Wastewater-based environmental surveillance (WBES) has been proven as proxy tool for monitoring nucleic acids of pathogens shed by infected population before clinical outcomes. The poor sewershed network of low to middle-income countries (LMICs) leads to most of the wastewater flow through open drains. We studied the effectiveness of WBES using open drain samples to monitor the emergence of the SARS-CoV-2 variants in 2 megacities of India having dense population through zonation approach. Samples from 28 locations spanned into 5 zones of Pune region, Maharashtra, India, were collected on a weekly basis during October 2021 to July 2022. Out of 1115 total processed samples, 303 (~ 27%) tested positive for SARS-CoV-2. The periodical rise and fall in the percentage positivity of the samples was found to be in sync with the abundance of SARS-CoV-2 RNA and the reported COVID-19 active cases for Pune city. Sequencing of the RNA obtained from wastewater samples confirmed the presence of SARS-CoV-2. Of 337 sequences, lineage identification for 242 samples revealed 265 distinct SARS-CoV-2 variants including 10 highly transmissible ones. Importantly, transition from Delta to Omicron variant could be detected in wastewater samples 2 weeks prior to any clinically reported Omicron cases in India. Thus, this study demonstrates the usefulness of open drain samples for real-time monitoring of a viral pathogen's evolutionary dynamics and could be implemented in LMICs.
Collapse
Affiliation(s)
- Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India
| | - Poonam Katarmal
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India
| | - Shubhankar Pawar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India
| | - Snehal Dawkhar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India
| | - Parvati Iyer
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
| | - Pradnya Kadam
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Unnati Bhalerao
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Manisha Tupekar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Priyanki Shah
- Pune Knowledge Cluster (PKC), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 41108, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India
| | - Santosh Koraktar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| |
Collapse
|
5
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Amato E, Hyllestad S, Heradstveit P, Langlete P, Moen LV, Rohringer A, Pires J, Baz Lomba JA, Bragstad K, Feruglio SL, Aavitsland P, Madslien EH. Evaluation of the pilot wastewater surveillance for SARS-CoV-2 in Norway, June 2022 - March 2023. BMC Public Health 2023; 23:1714. [PMID: 37667223 PMCID: PMC10476384 DOI: 10.1186/s12889-023-16627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND During the COVID-19 pandemic, wastewater-based surveillance gained great international interest as an additional tool to monitor SARS-CoV-2. In autumn 2021, the Norwegian Institute of Public Health decided to pilot a national wastewater surveillance (WWS) system for SARS-CoV-2 and its variants between June 2022 and March 2023. We evaluated the system to assess if it met its objectives and its attribute-based performance. METHODS We adapted the available guidelines for evaluation of surveillance systems. The evaluation was carried out as a descriptive analysis and consisted of the following three steps: (i) description of the WWS system, (ii) identification of users and stakeholders, and (iii) analysis of the system's attributes and performance including sensitivity, specificity, timeliness, usefulness, representativeness, simplicity, flexibility, stability, and communication. Cross-correlation analysis was performed to assess the system's ability to provide early warning signal of new wave of infections. RESULTS The pilot WWS system was a national surveillance system using existing wastewater infrastructures from the largest Norwegian municipalities. We found that the system was sensitive, timely, useful, representative, simple, flexible, acceptable, and stable to follow the general trend of infection. Preliminary results indicate that the system could provide an early signal of changes in variant distribution. However, challenges may arise with: (i) specificity due to temporary fluctuations of RNA levels in wastewater, (ii) representativeness when downscaling, and (iii) flexibility and acceptability when upscaling the system due to limited resources and/or capacity. CONCLUSIONS Our results showed that the pilot WWS system met most of its surveillance objectives. The system was able to provide an early warning signal of 1-2 weeks, and the system was useful to monitor infections at population level and complement routine surveillance when individual testing activity was low. However, temporary fluctuations of WWS values need to be carefully interpreted. To improve quality and efficiency, we recommend to standardise and validate methods for assessing trends of new waves of infection and variants, evaluate the WWS system using a longer operational period particularly for new variants, and conduct prevalence studies in the population to calibrate the system and improve data interpretation.
Collapse
Affiliation(s)
- Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway.
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Heradstveit
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Victoria Moen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andreas Rohringer
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
- Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), ECDC Fellowship Programme, Stockholm, Sweden
| | - Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Karoline Bragstad
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri Laura Feruglio
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Preben Aavitsland
- Norwegian Institute of Public Health, Oslo, Norway
- Pandemic Centre, University of Bergen, Bergen, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
7
|
Maida CM, Tramuto F, Giammanco GM, Palermo R, Priano W, De Grazia S, Purpari G, La Rosa G, Suffredini E, Lucentini L, Palermo M, Pollina Addario W, Graziano G, Immordino P, Vitale F, Mazzucco W. Wastewater-Based Epidemiology as a Tool to Detect SARS-CoV-2 Circulation at the Community Level: Findings from a One-Year Wastewater Investigation Conducted in Sicily, Italy. Pathogens 2023; 12:748. [PMID: 37375438 PMCID: PMC10305655 DOI: 10.3390/pathogens12060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Wastewater-based epidemiology is a well-established tool for detecting and monitoring the spread of enteric pathogens and the use of illegal drugs in communities in real time. Since only a few studies in Italy have investigated the correlation between SARS-CoV-2 in wastewater and the prevalence of COVID-19 cases from clinical testing, we conducted a one-year wastewater surveillance study in Sicily to correlate the load of SARS-CoV-2 RNA in wastewater and the reported cumulative prevalence of COVID-19 in 14 cities from October 2021 to September 2022. Furthermore, we investigated the role of SARS-CoV-2 variants and subvariants in the increase in the number of SARS-CoV-2 infections. Our findings showed a significant correlation between SARS-CoV-2 RNA load in wastewater and the number of active cases reported by syndromic surveillance in the population. Moreover, the correlation between SARS-CoV-2 in wastewater and the active cases remained high when a lag of 7 or 14 days was considered. Finally, we attributed the epidemic waves observed to the rapid emergence of the Omicron variant and the BA.4 and BA.5 subvariants. We confirmed the effectiveness of wastewater monitoring as a powerful epidemiological proxy for viral variant spread and an efficient complementary method for surveillance.
Collapse
Affiliation(s)
- Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Giovanni Maurizio Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Roberta Palermo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Walter Priano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Simona De Grazia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Marinuzzi, 90129 Palermo, Italy;
| | - Giuseppina La Rosa
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Luca Lucentini
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Mario Palermo
- Regional Health Authority of Sicily, Via Vaccaro 5, 90145 Palermo, Italy
| | | | - Giorgio Graziano
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Palmira Immordino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | | | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| |
Collapse
|
8
|
Wade MJ, Bunce JT, Petterson S, Ferguson C, Del Campo NC, Gaddis E, Karanis P. Editorial: Wastewater-based epidemiology at the frontier of global public health. JOURNAL OF WATER AND HEALTH 2023; 21:iii-vi. [PMID: 37338311 PMCID: wh_2023_001 DOI: 10.2166/wh.2023.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, Nobel House, Smith Square, London SW1P 3JR, United Kingdom
| | - Joshua T Bunce
- Department for Environment, Food and Rural Affairs, 2 Marsham Street, London SW1P 4DF, United Kingdom
| | - Susan Petterson
- School of Medicine, Griffith University, North Sydney, 2060, Australia
| | | | - Nohelia Castro Del Campo
- Centro de Investigación en Alimentación y Desarrollo, Carretera a Eldorado k.m. 5.5 Campo El Diez, C.P. 80110. Culiacán, Sinaloa, México
| | - Erica Gaddis
- SWCA Environmental Consultants, 257 East 200 South, Salt Lake City, Utah 84111, USA
| | - Panagiotos Karanis
- Unit of Anatomy and Morphology, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, CY-1700, Nicosia, Cyprus
| |
Collapse
|