1
|
Riedmann U, Chalupka A, Richter L, Sprenger M, Rauch W, Schenk H, Krause R, Willeit P, Oberacher H, Høeg TB, Ioannidis JPA, Pilz S. Estimates of SARS-CoV-2 Infections and Population Immunity After the COVID-19 Pandemic in Austria: Analysis of National Wastewater Data. J Infect Dis 2025:jiaf054. [PMID: 39964838 DOI: 10.1093/infdis/jiaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Postpandemic surveillance data on coronavirus disease 2019 (COVID-19) infections may help inform future public health policies regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, vaccinations, or other COVID-19 measures. We estimate the total SARS-CoV-2 infections in Austria after the end of the pandemic from wastewater data and utilize these estimates to calculate the average national levels of SARS-CoV-2 infection protection and COVID-19 death protection. METHODS We estimated the total SARS-CoV-2 infections in Austria after the end of the pandemic (5 May 2023, per World Health Organization) up to May 2024 from wastewater data using a previously published model. These estimates were used in an agent-based model (ABM) to estimate average national levels of SARS-CoV-2 infection protection and COVID-19 death protection, based on waning immunity estimates of infections and vaccination in previous literature. RESULTS We estimate approximately 3.2 million infections between 6 May 2023 and 23 May 2024, with a total of 17.8 million infections following 12 May 2020. The ABM estimates that the national average death protection was approximately 82% higher in May 2024 than before the pandemic. This represents a relative decrease of 8% since May 2023. It also shows that 95% of people in Austria were infected with SARS-CoV-2 at least once by May 2024. National infection protection remained relatively low after the onset of Omicron. CONCLUSIONS These findings should be considered for public health decisions on SARS-CoV-2 testing practices and vaccine booster administrations.
Collapse
Affiliation(s)
- Uwe Riedmann
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Alena Chalupka
- Institute for Surveillance and Infectious Disease Epidemiology, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Lukas Richter
- Institute for Surveillance and Infectious Disease Epidemiology, Austrian Agency for Health and Food Safety, Vienna, Austria
- Institute of Statistics, Graz University of Technology, Graz, Austria
| | - Martin Sprenger
- Institute of Social Medicine and Epidemiology, Medical University Graz, Graz, Austria
| | - Wolfgang Rauch
- Department of Environmental Engineering, University of Innsbruck, Innsbruck, Austria
| | - Hannes Schenk
- Department of Environmental Engineering, University of Innsbruck, Innsbruck, Austria
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Peter Willeit
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics, and Informatics, Medical University of Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tracy Beth Høeg
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Clinical Research, University of Southern Denmark, Syddanmark, Denmark
- Department of Emergency Medicine, University of California San Francisco, San Francisco, California, USA
| | - John P A Ioannidis
- Department of Medicine, Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Meta-Research Innovation Center at Stanford, Stanford University, Stanford, California, USA
| | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Diamanti C, Nousis L, Bozidis P, Koureas M, Kyritsi M, Markozannes G, Simantiris N, Panteli E, Koutsolioutsou A, Tsilidis K, Hadjichristodoulou C, Koutsotoli A, Christaki E, Alivertis D, Bartzokas A, Gartzonika K, Dovas C, Ntzani E. Wastewater Surveillance of SARS-CoV-2: A Comparison of Two Concentration Methods. Viruses 2024; 16:1398. [PMID: 39339875 PMCID: PMC11436116 DOI: 10.3390/v16091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wastewater surveillance is crucial for the epidemiological monitoring of SARS-CoV-2. Various concentration techniques, such as skimmed milk flocculation (SMF) and polyethylene glycol (PEG) precipitation, are employed to isolate the virus effectively. This study aims to compare these two methods and determine the one with the superior recovery rates. From February to December 2021, 24-h wastewater samples were collected from the Ioannina Wastewater Treatment Plant's inlet and processed using both techniques. Subsequent viral genome isolation and a real-time RT-qPCR detection of SARS-CoV-2 were performed. The quantitative analysis demonstrated a higher detection sensitivity with a PEG-based concentration than SMF. Moreover, when the samples were positive by both methods, PEG consistently yielded higher viral loads. These findings underscore the need for further research into concentration methodologies and the development of precise protocols to enhance epidemiological surveillance through wastewater analysis.
Collapse
Affiliation(s)
- Christina Diamanti
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | - Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | - Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Michalis Koureas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece
| | - Maria Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece
| | - George Markozannes
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | - Nikolaos Simantiris
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | - Eirini Panteli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | | | - Konstantinos Tsilidis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece
- National Public Health Organization, 15123 Athens, Greece
| | - Alexandra Koutsotoli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina 45110, Greece
| | - Aristides Bartzokas
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Chrysostomos Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece
- Center for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI 02912, USA
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Rauch W, Schenk H, Rauch N, Harders M, Oberacher H, Insam H, Markt R, Kreuzinger N. Estimating actual SARS-CoV-2 infections from secondary data. Sci Rep 2024; 14:6732. [PMID: 38509181 PMCID: PMC10954653 DOI: 10.1038/s41598-024-57238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Eminent in pandemic management is accurate information on infection dynamics to plan for timely installation of control measures and vaccination campaigns. Despite huge efforts in diagnostic testing of individuals, the underestimation of the actual number of SARS-CoV-2 infections remains significant due to the large number of undocumented cases. In this paper we demonstrate and compare three methods to estimate the dynamics of true infections based on secondary data i.e., (a) test positivity, (b) infection fatality and (c) wastewater monitoring. The concept is tested with Austrian data on a national basis for the period of April 2020 to December 2022. Further, we use the results of prevalence studies from the same period to generate (upper and lower bounds of) credible intervals for true infections for four data points. Model parameters are subsequently estimated by applying Approximate Bayesian Computation-rejection sampling and Genetic Algorithms. The method is then validated for the case study Vienna. We find that all three methods yield fairly similar results for estimating the true number of infections, which supports the idea that all three datasets contain similar baseline information. None of them is considered superior, as their advantages and shortcomings depend on the specific case study at hand.
Collapse
Affiliation(s)
- Wolfgang Rauch
- Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria.
| | - Hannes Schenk
- Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria
| | - Nikolaus Rauch
- Interactive Graphics and Simulation Group, University of Innsbruck, Innsbruck, Austria
| | - Matthias Harders
- Interactive Graphics and Simulation Group, University of Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Rudolf Markt
- Department of Health Sciences and Social Work, Carinthia University of Applied Sciences, Villach, Austria
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, Technical University Vienna, Vienna, Austria
| |
Collapse
|
4
|
Patiño LH, Ballesteros N, Muñoz M, Ramírez AL, Castañeda S, Galeano LA, Hidalgo A, Paniz-Mondolfi A, Ramírez JD. Global and genetic diversity of SARS-CoV-2 in wastewater. Heliyon 2024; 10:e27452. [PMID: 38463823 PMCID: PMC10923837 DOI: 10.1016/j.heliyon.2024.e27452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Angie Lorena Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Luis Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, Pasto, 52002, Colombia
| | - Arsenio Hidalgo
- Grupo de Investigación en Salud Pública, Departamento de Matemáticas, Universidad de Nariño, Pasto, 50002, Colombia
| | - Alberto Paniz-Mondolfi
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| |
Collapse
|
5
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Trigo-Tasende N, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Vaamonde M, López-Oriona Á, Barbeito I, Nasser-Ali M, Reif R, Rodiño-Janeiro BK, Fernández-Álvarez E, Iglesias-Corrás I, Freire B, Tarrío-Saavedra J, Tomás L, Gallego-García P, Posada D, Bou G, López-de-Ullibarri I, Cao R, Ladra S, Poza M. Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27877-3. [PMID: 37286834 DOI: 10.1007/s11356-023-27877-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 mutations in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected people and the frequency of each emerging variant circulating in the community, which considerable improved the surveillance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between 103 and 106 SARS-CoV-2 RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8-36 days in advance with respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health system did. Data generated here helped local authorities and health managers to give a faster and more efficient response to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring in wastewater over time.
Collapse
Affiliation(s)
- Noelia Trigo-Tasende
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Soraya Rumbo-Feal
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Kelly Conde-Pérez
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Manuel Vaamonde
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ángel López-Oriona
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Inés Barbeito
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Mohammed Nasser-Ali
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Rubén Reif
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Bruno K Rodiño-Janeiro
- BFlow, University of Santiago de Compostela (USC) and Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15706, Santiago de Compostela, A Coruña, Spain
| | - Elisa Fernández-Álvarez
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Iago Iglesias-Corrás
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Borja Freire
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Javier Tarrío-Saavedra
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Germán Bou
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Ignacio López-de-Ullibarri
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ricardo Cao
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Susana Ladra
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Margarita Poza
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain.
| |
Collapse
|
7
|
Schenk H, Heidinger P, Insam H, Kreuzinger N, Markt R, Nägele F, Oberacher H, Scheffknecht C, Steinlechner M, Vogl G, Wagner AO, Rauch W. Prediction of hospitalisations based on wastewater-based SARS-CoV-2 epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162149. [PMID: 36773921 PMCID: PMC9911153 DOI: 10.1016/j.scitotenv.2023.162149] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology is widely applied in Austria since April 2020 to monitor the SARS-CoV-2 pandemic. With a steadily increasing number of monitored wastewater facilities, 123 plants covering roughly 70 % of the 9 million population were monitored as of August 2022. In this study, the SARS-CoV-2 viral concentrations in raw sewage were analysed to infer short-term hospitalisation occupancy. The temporal lead of wastewater-based epidemiological time series over hospitalisation occupancy levels facilitates the construction of forecast models. Data pre-processing techniques are presented, including the approach of comparing multiple decentralised wastewater signals with aggregated and centralised clinical data. Time‑lead quantification was performed using cross-correlation analysis and coefficient of determination optimisation approaches. Multivariate regression models were successfully applied to infer hospitalisation bed occupancy. The results show a predictive potential of viral loads in sewage towards Covid-19 hospitalisation occupancy, with an average lead time towards ICU and non-ICU bed occupancy between 14.8-17.7 days and 8.6-11.6 days, respectively. The presented procedure provides access to the trend and tipping point behaviour of pandemic dynamics and allows the prediction of short-term demand for public health services. The results showed an increase in forecast accuracy with an increase in the number of monitored wastewater treatment plants. Trained models are sensitive to changing variant types and require recalibration of model parameters, likely caused by immunity by vaccination and/or infection. The utilised approach displays a practical and rapidly implementable application of wastewater-based epidemiology to infer hospitalisation occupancy.
Collapse
Affiliation(s)
- Hannes Schenk
- Unit of Environmental Engineering, University of Innsbruck, Technikerstraße 13, Innsbruck 6020, Austria.
| | - Petra Heidinger
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz 8010, Austria.
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck 6020, Austria.
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management at TU Wien, Karlsplatz 13, Vienna 1040, Austria.
| | - Rudolf Markt
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck 6020, Austria; Department of Health Sciences and Social Work, Carinthia University of Applied Sciences, St. Veiter Straße, 47, Klagenfurt 9020, Austria.
| | - Fabiana Nägele
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck 6020, Austria.
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Müllerstraße, 44, Innsbruck 6020, Austria.
| | - Christoph Scheffknecht
- Institut für Umwelt und Lebensmittelsicherheit des Landes Vorarlberg, Montfortstraße 4, Bregenz 6900, Austria.
| | - Martin Steinlechner
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Müllerstraße, 44, Innsbruck 6020, Austria.
| | - Gunther Vogl
- Institut f¨ur Lebensmittelsicherheit, Veterinärmedizin und Umwelt, Kirchengasse 43, Klagenfurt 9020, Austria.
| | - Andreas Otto Wagner
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck 6020, Austria.
| | - Wolfgang Rauch
- Unit of Environmental Engineering, University of Innsbruck, Technikerstraße 13, Innsbruck 6020, Austria.
| |
Collapse
|
8
|
Amman F, Markt R, Endler L, Hupfauf S, Agerer B, Schedl A, Richter L, Zechmeister M, Bicher M, Heiler G, Triska P, Thornton M, Penz T, Senekowitsch M, Laine J, Keszei Z, Klimek P, Nägele F, Mayr M, Daleiden B, Steinlechner M, Niederstätter H, Heidinger P, Rauch W, Scheffknecht C, Vogl G, Weichlinger G, Wagner AO, Slipko K, Masseron A, Radu E, Allerberger F, Popper N, Bock C, Schmid D, Oberacher H, Kreuzinger N, Insam H, Bergthaler A. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol 2022; 40:1814-1822. [PMID: 35851376 DOI: 10.1038/s41587-022-01387-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.
Collapse
Affiliation(s)
- Fabian Amman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Hupfauf
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Schedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Richter
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | | | - Martin Bicher
- dwh GmbH, Vienna, Austria.,Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Georg Heiler
- Complexity Science Hub, Vienna, Austria.,Institute of Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Petr Triska
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Matthew Thornton
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jan Laine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zsofia Keszei
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Klimek
- Complexity Science Hub, Vienna, Austria.,Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
| | - Fabiana Nägele
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Markus Mayr
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Beatrice Daleiden
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Steinlechner
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Niederstätter
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Heidinger
- Austrian Centre of Industrial Biotechnology GmbH, Graz, Austria
| | - Wolfgang Rauch
- Department of Infrastructure, Universität Innsbruck, Innsbruck, Austria
| | | | - Gunther Vogl
- Institut für Lebensmittelsicherheit, Veterinärmedizin und Umwelt des Landes Kärnten, Klagenfurt am Wörthersee, Austria
| | - Günther Weichlinger
- Abteilung 12 - Wasserwirtschaft, Amt der Kärntner Landesregierung, Klagenfurt am Wörthersee, Austria
| | | | - Katarzyna Slipko
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Amandine Masseron
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Elena Radu
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria.,Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | | - Niki Popper
- dwh GmbH, Vienna, Austria.,Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Daniela Schmid
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Heribert Insam
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Corpuz MVA, Buonerba A, Zarra T, Hasan SW, Korshin GV, Belgiorno V, Naddeo V. Advances in virus detection methods for wastewater-based epidemiological applications. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100238. [PMID: 37520925 PMCID: PMC9339091 DOI: 10.1016/j.cscee.2022.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool that has the potential to reveal the extent of an ongoing disease outbreak or to predict an emerging one. Recent studies have shown that SARS-CoV-2 concentration in wastewater may be correlated with the number of COVID-19 cases in the corresponding population. Most of the recent studies and applications of wastewater-based surveillance of SARS-CoV-2 applied the "gold standard" real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) detection method. However, this method also has its limitations. The paper aimed to present recent improvements and applications of the PCR-based methods for SARS-CoV-2 monitoring in wastewater. Furthermore, it aimed to review alternative methods utilized and/or proposed for the detection of the virus in wastewater matrices. From the review, it was found that several studies have investigated the use of reverse-transcription digital polymerase reaction (RT-dPCR), which was generally shown to have a lower limit of detection (LOD) over the RT-qPCR. Aside from this, non-PCR-based and non-RNA based methods have also been explored for the detection of SARS-CoV-2 in wastewater, with detailed attention given to the detection of SARS-CoV-2 proteins. The potential methods for protein detection include mass spectrometry, the use of immunosensors, and nanotechnological applications. In addition, the review of recent studies also revealed two types of emerging methods related to the detection of SARS-CoV-2 in wastewater: i) capsid-integrity assays to infer about the infectivity of SARS-CoV-2 present in wastewater, and ii) alternative methods for detection of SARS-CoV-2 variants of concern (VOCs) in wastewater. The recent studies on proposed methods of SARS-CoV-2 detection in wastewater have considered improving this approach in one or more of the following aspects: rapidity, simplicity, cost, sensitivity, and specificity. However, further studies are needed in order to realize the full application of these methods for WBE in the field.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| |
Collapse
|
10
|
Xu X, Deng Y, Zheng X, Li S, Ding J, Yang Y, On HY, Yang R, Chui HK, Yau CI, Tun HM, Chin AWH, Poon LLM, Peiris M, Leung GM, Zhang T. Evaluation of RT-qPCR Primer-Probe Sets to Inform Public Health Interventions Based on COVID-19 Sewage Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8875-8884. [PMID: 35584232 PMCID: PMC9128008 DOI: 10.1021/acs.est.2c00974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Sewage surveillance is increasingly employed as a supplementary tool for COVID-19 control. Experiences learnt from large-scale trials could guide better interpretation of the sewage data for public health interventions. Here, we compared the performance of seven commonly used primer-probe sets in RT-qPCR and evaluated the usefulness in the sewage surveillance program in Hong Kong. All selected primer-probe sets reliably detected SARS-CoV-2 in pure water at 7 copies per μL. Sewage matrix did not influence RT-qPCR determination of SARS-CoV-2 concentrated from a small-volume sewage (30 mL) but introduced inhibitory impacts on a large-volume sewage (920 mL) with a ΔCt of 0.2-10.8. Diagnostic performance evaluation in finding COVID-19 cases showed that N1 was the best single primer-probe set, while the ORF1ab set is not recommended. Sewage surveillance using the N1 set for over 3200 samples effectively caught the outbreak trend and, importantly, had a 56% sensitivity and a 96% specificity in uncovering the signal sources from new cases and/or convalescent patients in the community. Our study paves the way for selecting detection primer-probe sets in wider applications in responding to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| | - Hei Yin On
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
| | - Rong Yang
- Environmental Protection Department, The
Government of Hong Kong SAR, Tamar, Hong Kong SAR 999077,
China
| | - Ho-Kwong Chui
- Environmental Protection Department, The
Government of Hong Kong SAR, Tamar, Hong Kong SAR 999077,
China
| | - Chung In Yau
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
| | - Hein Min Tun
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
- HKU-Pasteur Research Pole,
Sassoon Road, Hong Kong SAR 999077, China
| | - Alex W. H. Chin
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
| | - Leo L. M. Poon
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
- HKU-Pasteur Research Pole,
Sassoon Road, Hong Kong SAR 999077, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
- HKU-Pasteur Research Pole,
Sassoon Road, Hong Kong SAR 999077, China
| | - Gabriel M. Leung
- School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
SAR 999077, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology
Laboratory, Center for Environmental Engineering Research, Department of Civil
Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong SAR 999077, China
| |
Collapse
|
11
|
Haramoto E, Medema G, Meschke JS, Petterson S. Editorial: SARS-CoV-2 in water. JOURNAL OF WATER AND HEALTH 2022; 20:iii-vi. [PMID: 36366985 DOI: 10.2166/wh.2022.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - Gertjan Medema
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - John Scott Meschke
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| | - Susan Petterson
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Japan
| |
Collapse
|