1
|
Tasnim F, Hasan M, Sakib MN, Zahid A, Rahman M, Islam MS, Muktadir MG. An assessment of the spatial and temporal distribution of nitrate and trace element concentrations in groundwater in coastal districts of Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178988. [PMID: 40054241 DOI: 10.1016/j.scitotenv.2025.178988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Groundwater is considered a significant source of drinking water around the world. However, the naturally occurring trace elements, mostly As, B, Fe, Mn, Cu, and Zn are proven to deteriorate the groundwater quality. This study aimed to evaluate the seasonal distribution of trace metals and NO3- in groundwater and the associated risk to human health in the coastal region of Bangladesh. The result indicated that As exceeded the WHO and BDWS limits during wet and dry seasons in several coastal districts. Despite the abundant presence of Fe throughout the entire study area, it does not present any significant health risk. But alarming conditions of Mn have been observed all over the coastal area in both seasons. Aquifers with shallow depths showed to be more contaminated than deeper ones. The spatial distribution maps showed that NO3- and Cr were found in high concentration in some similar areas during the dry season. The studied elements showed a pattern in exceeding of WHO permissible limits such as Fe > Mn > As > Cr > NO3- in wet season and Mn > Fe > As > Cr > NO3- in dry season. Therefore, high non-carcinogenic and carcinogenic risk was found among adult and children population via oral exposure. Most of the samples showed cancer risk at medium to very high. The principal component analysis observed the pollution sources, revealing that groundwater contamination in this region was mostly due to geogenic sources. This study clearly showed that the groundwater in coastal districts is heavily contaminated, which is a concerning issue. The aforementioned findings have given some clarity on the coastal region's groundwater quality state, which can be beneficial in formulating a plan safe water supply.
Collapse
Affiliation(s)
- Fairose Tasnim
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Mahmudul Hasan
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Nazmus Sakib
- Directorate of Ground Water Hydrology, Bangladesh Water Development Board (BWDB), Dhaka 1205, Bangladesh
| | - Anwar Zahid
- Directorate of Ground Water Hydrology, Bangladesh Water Development Board (BWDB), Dhaka 1205, Bangladesh
| | - Mahfujur Rahman
- Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Golam Muktadir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Jayan A, Vijayan V, Sreekantan S, Arya S, Krishnaprasad PK, Santosh M, Shaji E. Hematite nanomaterial from a tropical freshwater ecosystem: Geological, environmental, and industrial implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175611. [PMID: 39168323 DOI: 10.1016/j.scitotenv.2024.175611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Synthetic hematite (Fe2O3) nanoparticles are extensively explored for medicine, optics, and environmental remediation. However, natural iron nanoparticles in a freshwater ecosystem have not been well characterized. Here we report the presence of natural iron nanoparticles in a tropical freshwater ecosystem in southern India. These iron nanoparticles that exist as slime in the natural water system were characterized through a multiproxy investigation involving Field-Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), X-ray Fluorescence (XRF), X-ray Photoelectron Spectroscopy (XPS), and Raman spectroscopy and BET analyses. These nanoparticles exist as amorphous hematite (Fe2O3), with the XRD peaks matching that of the iron arsenate compound. Fe2O3 occurs as mesoporous hollow microspheres with a size range of 14.97 to 61.3 nm and a surface area of 48.45m2/g. Further, the identification of Bacillus cereus in the slime suggests its role in iron sequestration, indicating a biogeochemical origin, which we infer is a particularly common phenomenon in tropical river basins where lateritic soils prevail. This study is the first to describe natural iron nanoparticles in a tropical freshwater ecosystem. It identifies their amorphous hematite structure and biogeochemical origin, offering new insights into their ecological roles and potential applications. This discovery presents an opportunity for utilizing this slime as an important source of hematite nanomaterials, with potential industrial applications.
Collapse
Affiliation(s)
- Arya Jayan
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - Viji Vijayan
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India; Translational Research and Innovation Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - Sruthi Sreekantan
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - S Arya
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - P K Krishnaprasad
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China; Department of Earth Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - E Shaji
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India; Translational Research and Innovation Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India.
| |
Collapse
|
3
|
Chakraborty TK, Rahman MS, Nice MS, Netema BN, Islam KR, Debnath PC, Chowdhury P, Halder M, Zaman S, Ghosh GC, Rayhan MA, Asif SMH, Biswas A, Sarker S, Hasan MJ, Ahmmed M, Munna A. Application of machine learning and multivariate approaches for assessing microplastic pollution and its associated risks in the urban outdoor environment of Bangladesh. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134359. [PMID: 38691990 DOI: 10.1016/j.jhazmat.2024.134359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Microplastics (MPs) are an emerging global concern due to severe toxicological risks for ecosystems and public health. Therefore, this is the first study in Bangladesh to assess MP pollution and its associated risks for ecosystems and human health in the outdoor urban environment using machine learning and multivariate approaches. The occurrences of MPs in the urban road dust were 52.76 ± 20.24 particles/g with high diversity, where fiber shape (77%), 0.1-0.5 mm size MPs (75%), blue color (26%), and low-density polyethylene (24%) polymer was the dominating MPs category. Pollution load index value (1.28-4.42), showed severe pollution by MPs. Additionally, the contamination factor (1.00-5.02), and Nemerow pollution index (1.38-5.02), indicate moderate to severe MP pollution. The identified polymers based on calculated potential ecological risk (2248.52 ± 1792.79) and polymer hazard index (814.04 ± 346.15) showed very high and high risks, respectively. The occurrences of MPs could effectively be predicted by random forest, and support random vector machine, where EC, salinity, pH, OC, and texture classes were the influencing parameters. Considering the human health aspect, children and adults could be acutely exposed to 19259.68 and 5777.90 MP particles/ year via oral ingestion. Monte-Carlo-based polymers associated cancer risk assessment results indicate moderate risk and high risk for adults and children, respectively, where children were more vulnerable than adults for MP pollution risks. Overall assessment mentioned that Dhaka was the most polluted division among the other divisions.
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Md Sozibur Rahman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Baytune Nahar Netema
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Khandakar Rashedul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Partha Chandra Debnath
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Pragga Chowdhury
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monishanker Halder
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Abu Rayhan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sk Mahmudul Hasan Asif
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Aditi Biswas
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sarajit Sarker
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Jahid Hasan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mahfuz Ahmmed
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Asadullah Munna
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
4
|
Aryan Y, Pon T, Panneerselvam B, Dikshit AK. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region. JOURNAL OF WATER AND HEALTH 2024; 22:235-267. [PMID: 38421620 PMCID: wh_2023_082 DOI: 10.2166/wh.2023.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The present study found that ∼80 million people in India, ∼60 million people in Pakistan, ∼70 million people in Bangladesh, and ∼3 million people in Nepal are exposed to arsenic groundwater contamination above 10 μg/L, while Sri Lanka remains moderately affected. In the case of fluoride contamination, ∼120 million in India, >2 million in Pakistan, and ∼0.5 million in Sri Lanka are exposed to the risk of fluoride above 1.5 mg/L, while Bangladesh and Nepal are mildly affected. The hazard quotient (HQ) for arsenic varied from 0 to 822 in India, 0 to 33 in Pakistan, 0 to 1,051 in Bangladesh, 0 to 582 in Nepal, and 0 to 89 in Sri Lanka. The cancer risk of arsenic varied from 0 to 1.64 × 1-1 in India, 0 to 1.07 × 10-1 in Pakistan, 0 to 2.10 × 10-1 in Bangladesh, 0 to 1.16 × 10-1 in Nepal, and 0 to 1.78 × 10-2 in Sri Lanka. In the case of fluoride, the HQ ranged from 0 to 21 in India, 0 to 33 in Pakistan, 0 to 18 in Bangladesh, 0 to 10 in Nepal, and 0 to 10 in Sri Lanka. Arsenic and fluoride have adverse effects on animals, resulting in chemical poisoning and skeletal fluorosis. Adsorption and membrane filtration have demonstrated outstanding treatment outcomes.
Collapse
Affiliation(s)
- Yash Aryan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail:
| | - Thambidurai Pon
- Department of Coastal Disaster Management, School of Physical, Chemical and Applied Sciences, Pondicherry University, Port Blair Campus - 744112, Andaman and Nicobar Islands, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil Kumar Dikshit
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Hossain MS, Nahar N, Shaibur MR, Bhuiyan MT, Siddique AB, Al Maruf A, Khan AS. Hydro-chemical characteristics and groundwater quality evaluation in south-western region of Bangladesh: A GIS-based approach and multivariate analyses. Heliyon 2024; 10:e24011. [PMID: 38268585 PMCID: PMC10806273 DOI: 10.1016/j.heliyon.2024.e24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
The study focuses on the chemistry of groundwater and if it is suitable for drinking and for use in agriculture using water quality indices, GIS mapping, and multivariate analyses in Sharsa Upazila, Jashore district, Bangladesh. In this study, the concentration of NH4+, K+, Ca2+, EC, Turbidity overstep BDWS drinking standards in 69 %, 14 %, 100 %, 40 % (WHO), 73 % of samples respectively. The value of Water Quality Indices (WQI) results inferred that the maximum specimen was held good quality for drinking uses, and the values distributed central eastern part to the south-eastern part were good quality water in the selected studied area. The study area's PH, EC, SAR, Na (%), TH, and NO3- values were mapped using GIS tools to show their spatial distribution. The cluster and correlation matrix analyses are used to validate for Principle Component Analysis (PCA). The five PCA results exhibited that the presence of EC, turbidity, K+, SO42- and NO3- was significant and was caused by both geogenic (rock weathering and cation exchange) and anthropogenic (agrochemicals, animal feedback) factor. According to the hydro-geochemical data, the maximum number of samples is of the Ca-Mg-HCO3-Cl type and is dominated by rocks. The irrigation water indices like MH, KR, SAR, and %Na indicate show high-quality groundwater for irrigation purposes. Most of the samples were satisfactory and compiled with WHO and Bangladeshi criteria for standard drinking water guideline values.
Collapse
Affiliation(s)
- Mohammed Sadid Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Nazneen Nahar
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Molla Rahman Shaibur
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Tareq Bhuiyan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Bakar Siddique
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abdullah Al Maruf
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnobati, Pulerhat, Jashore, 7400, Bangladesh
| |
Collapse
|
6
|
Friedman A, Boselli E, Ogneva-Himmelberger Y, Heiger-Bernays W, Brochu P, Burgess M, Schildroth S, Denehy A, Downs T, Papautsky I, Clauss Henn B. Manganese in residential drinking water from a community-initiated case study in Massachusetts. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:58-67. [PMID: 37301899 PMCID: PMC10727146 DOI: 10.1038/s41370-023-00563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Manganese (Mn) is a metal commonly found in drinking water, but the level that is safe for consumption is unknown. In the United States (U.S.), Mn is not regulated in drinking water and data on water Mn concentrations are temporally and spatially sparse. OBJECTIVE Examine temporal and spatial variability of Mn concentrations in repeated tap water samples in a case study of Holliston, Massachusetts (MA), U.S., where drinking water is pumped from shallow aquifers that are vulnerable to Mn contamination. METHODS We collected 79 residential tap water samples from 21 households between September 2018 and December 2019. Mn concentrations were measured using inductively coupled plasma mass spectrometry. We calculated descriptive statistics and percent of samples exceeding aesthetic (secondary maximum containment level; SMCL) and lifetime health advisory (LHA) guidelines of 50 µg/L and 300 µg/L, respectively. We compared these concentrations to concurrent and historic water Mn concentrations from publicly available data across MA. RESULTS The median Mn concentration in Holliston residential tap water was 2.3 µg/L and levels were highly variable (range: 0.03-5,301.8 µg/L). Mn concentrations exceeded the SMCL and LHA in 14% and 12% of samples, respectively. Based on publicly available data across MA from 1994-2022, median Mn concentration was 17.0 µg/L (N = 37,210; range: 1-159,000 µg/L). On average 40% of samples each year exceeded the SMCL and 9% exceeded the LHA. Samples from publicly available data were not evenly distributed between MA towns or across sampling years. IMPACT STATEMENT This study is one of the first to examine Mn concentrations in drinking water both spatially and temporally in the U.S. Findings suggest that concentrations of Mn in drinking water frequently exceed current guidelines and occur at concentrations shown to be associated with adverse health outcomes, especially for vulnerable and susceptible subpopulations like children. Future studies that comprehensively examine exposure to Mn in drinking water and its associations with children's health are needed to protect public health.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Elena Boselli
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Yelena Ogneva-Himmelberger
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Paige Brochu
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Mayah Burgess
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Timothy Downs
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Birgit Clauss Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Hossain MI, Bukhari A, Almujibah H, Alam MM, Islam MN, Chowdhury TA, Islam S, Joardar M, Roychowdhury T, Hasnat MA. Validation of the efficiency of arsenic mitigation strategies in southwestern region of Bangladesh and development of a cost-effective adsorbent to mitigate arsenic levels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119381. [PMID: 37864938 DOI: 10.1016/j.jenvman.2023.119381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
World's highest arsenic (As) contamination is well-documented for the groundwater system of southwestern region (mainly Jashore district) of Bangladesh, where the majority of inhabitants are underprivileged. To mitigate As poisoning in southwestern Bangladesh, numerous steps have been taken so far by the government and non-governmental organizations (NGOs). Among them, digging deep tube wells and As removal by naturally deposited Fe(OH)3 species are being widely practiced in the contaminated areas. However, these actions have been left unmonitored for decades, making people unaware of this naturally occurring deadly poison in their drinking water. Hence, water samples (n = 63, both treated and untreated) and soil samples (n = 4) were collected from different spots in Jashore district to assess the safety level of drinking water and to understand the probable reasons for high As(III) contamination. About 93.7% of samples were found to contain As(III) above 10 μg/L; among them, 38% contained above 50 μg/L. The study shows that current As(III) removal strategies in the study area are ineffective. In this connection, a simple low-cost As(III) removal adsorbent is proposed that can be prepared with very cheap and locally available materials like iron sludge and charcoal. The adsorbent was characterized in terms of SEM, EDX, and XPS. The optimal dosage of the adsorbent was investigated for real-life application concerning several vital water quality parameters. The Fe-C adsorbent exhibited a maximum As(III) removal efficiency of 92% in real groundwater samples. The study will allow policymakers for informed decision-making regarding water body management as well as enable the local people to avail As-safe water in a way that aligns with their economic factors.
Collapse
Affiliation(s)
- Mohammad Imran Hossain
- Electrochemistry and Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Atiya Bukhari
- Department of Business Administration, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Hamad Almujibah
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif City, 21974, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Md Nurnobi Islam
- Electrochemistry and Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tahmid A Chowdhury
- Department of Geography & Environment, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Suravi Islam
- Industrial Physics Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Mohammad A Hasnat
- Electrochemistry and Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
8
|
Custodio M, Peñaloza R, Ochoa S, De la Cruz H, Rodríguez C, Cuadrado W. Microbial and potentially toxic elements risk assessment in high Andean river water based on Monte Carlo simulation, Peru. Sci Rep 2023; 13:21473. [PMID: 38053001 PMCID: PMC10697974 DOI: 10.1038/s41598-023-48853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
The study evaluated microbial and Potentially Toxic Elements-PTEs risks in high Andean river water in Peru using Monte Carlo simulation. A total of 144 water samples were collected from four rivers and evaluated for physicochemical parameters, PTEs and bacterial pathogens. The microbial risk analysis for exposure to pathogens present in the water was based on the probability of occurrence of diseases associated with Escherichia coli, Pseudomonas aeruginosa and enterococci. PTEs risk analysis was performed using a Monte Carlo simulation approach. The results showed that the highest microbial risk due to exposure to water contaminated by E. coli, P. aeruginosa and enterococci was recorded in the Miraflores and Chia rivers. Meanwhile, the analysis of carcinogenic and non-carcinogenic risk by PTEs in adults and children revealed that the Chia river presents a high risk of contamination by PTEs, especially the carcinogenic risk for children. The Monte Carlo simulation indicated a 56.16% and 94.85% probability of exceeding the limit value of 0.0001 for carcinogenic risk in adults and children, respectively. It can be concluded that children consuming the waters of the Chia river are potentially at risk of As toxicity.
Collapse
Affiliation(s)
- María Custodio
- Centro de Investigación en Medicina de Altura y Medio Ambiente, Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru.
| | - Richard Peñaloza
- Centro de Investigación en Medicina de Altura y Medio Ambiente, Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru
| | - Salomé Ochoa
- Centro de Investigación en Medicina de Altura y Medio Ambiente, Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru
| | - Heidi De la Cruz
- Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru
| | - Ciro Rodríguez
- Centro de Investigación en Medicina de Altura y Medio Ambiente, Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru
| | - Walter Cuadrado
- Universidad Nacional Autónoma Altoandina de Tarma, Jr. Huaraz 431, Tarma, Peru
| |
Collapse
|
9
|
Phan K, Hoeng S, Phin S, The N, Sriv T, Sao V, Chey CO. Chemical risks in drinking water of inhabitants in the basin of the Tonle Sap Great Lake. JOURNAL OF WATER AND HEALTH 2023; 21:1908-1921. [PMID: 38153720 PMCID: wh_2023_236 DOI: 10.2166/wh.2023.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The present study aimed to assess chemical risks in the drinking water of inhabitants in the basin of the Tonle Sap Great Lake. Water samples from tube wells (n = 52), dug wells (n = 13), stored rain water (n = 39), ponds/lakes (n = 19), canals/rivers (n = 24), and household pipe water (n = 45) were collected and analyzed for physicochemical properties, as well as microbial and chemical qualities using standard methods. Analytical results revealed that 42.1% of tube wells had As > 10 μg L-1 while 8.3% had Cr > 0.05 mg L-1. Concurrently, 55.2 and 11.8% of tube wells had Cd > 3.00 μg L-1 and Pb > 10 μg L-1, respectively. Moreover, 35.0% of pipe water had Fe > 0.3 mg L-1, whereas 85.7% of tube wells and 69.2% of dug wells had Mn > 0.1 mg L-1. All water sources including pipe water could pose risks of non-carcinogenic effects of chemical mixtures to all exposure groups through their drinking water pathway. Children were at a higher risk of chemical mixtures in their drinking water than adults. This study suggests that advanced treatment technologies should be applied to the current water treatment plants to provide inhabitants with safe drinking water.
Collapse
Affiliation(s)
- Kongkea Phan
- Food Chemistry Lab, Faculty of Science and Technology, International University, Phnom Penh 120801, Cambodia; Water Innovation Lab, Kampong Cham 030501, Cambodia E-mail:
| | - Sophanith Hoeng
- Food Chemistry Lab, Faculty of Science and Technology, International University, Phnom Penh 120801, Cambodia
| | - Samnang Phin
- Food Chemistry Lab, Faculty of Science and Technology, International University, Phnom Penh 120801, Cambodia
| | - Noreaksatya The
- Food Chemistry Lab, Faculty of Science and Technology, International University, Phnom Penh 120801, Cambodia
| | - Tharith Sriv
- Graduated School of Science, Royal University of Phnom Penh, Federation of Russia Blvd, Tuol Kork, Phnom Penh, Cambodia
| | - Vibol Sao
- Graduated School of Science, Royal University of Phnom Penh, Federation of Russia Blvd, Tuol Kork, Phnom Penh, Cambodia
| | - Chan Oeurn Chey
- Graduated School of Science, Royal University of Phnom Penh, Federation of Russia Blvd, Tuol Kork, Phnom Penh, Cambodia
| |
Collapse
|
10
|
Chakraborty TK, Tammim L, Islam KR, Nice MS, Netema BN, Rahman MS, Sen S, Zaman S, Ghosh GC, Munna A, Habib A, Tul-Coubra K, Bosu H, Halder M, Rahman MA. Black carbon derived PET plastic bottle waste and rice straw for sorption of Acid Red 27 dye: Machine learning approaches, kinetics, isotherm and thermodynamic studies. PLoS One 2023; 18:e0290471. [PMID: 37611009 PMCID: PMC10446224 DOI: 10.1371/journal.pone.0290471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
This study focuses on the probable use of PET waste black carbon (PETWBC) and rice straw black carbon (RSBC) as an adsorbent for Acid Red 27 (AR 27) adsorption. The prepared adsorbent is characterized by FE-SEM and FT-IR. Batch adsorption experiments were conducted with the influencing of different operational conditions namely time of contact (1-180 min), AR 27 concentration (5-70 mg/L), adsorbent dose (0.5-20 g/L), pH (2-10), and temperature (25-60°C). High coefficient value [PETWBC (R2 = 0.94), and RSBC (R2 = 0.97)] of process optimization model suggesting that this model was significant, where pH and adsorbent dose expressively stimulus removal efficiency including 99.88, and 99.89% for PETWBC, and RSBC at pH (2). Furthermore, the machine learning approaches (ANN and BB-RSM) revealed a good association between the tested and projected value. Pseudo-second-order was the well-suited kinetics, where Freundlich isotherm could explain better equilibrium adsorption data. Thermodynamic study shows AR 27 adsorption is favourable, endothermic, and spontaneous. Environmental friendliness properties are confirmed by desorption studies and satisfactory results also attain from real wastewater experiments. Finally, this study indicates that PETWBC and RSBC could be potential candidates for the adsorption of AR 27 from wastewater.
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Lamia Tammim
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khandakar Rashedul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Baytune Nahar Netema
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Sozibur Rahman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sujoy Sen
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Asadullah Munna
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Ahsan Habib
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khadiza Tul-Coubra
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Himel Bosu
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Monishanker Halder
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Aliur Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
11
|
Uddin M, Alam FB. Health risk assessment of the heavy metals at wastewater discharge points of textile industries in Tongi, Shitalakkhya, and Dhaleshwari, Bangladesh. JOURNAL OF WATER AND HEALTH 2023; 21:586-600. [PMID: 37254907 PMCID: wh_2023_284 DOI: 10.2166/wh.2023.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pollution of industry-adjacent surface water bodies has become a major threat to the environment in Bangladesh. This study examined the health risks of concentrated heavy metals in Tongi, Shitalakkhya, and Dhaleshwari, which receive effluents from wastewater treatment plants. Samples were analyzed for heavy metals such as lead, cadmium, iron, magnesium, manganese, zinc, copper, chromium, and nickel. At all the locations, only Zn, Cu, and Ni did not exceed the Bangladesh standard for drinking water. The health risk was estimated using the hazard quotient (HQ) technique. There was a threat of health risks resulting from the exposure through ingestion, with Pb, Cd, Fe, Mg, and Cr being the main contributors. The orders of decreasing values of mean HQ were Mg > Pb > Fe > Cr > Cd, Mg > Fe > Pb > Cr > Cd, and Cr > Mg > Pb > Fe > Cd via oral intake for both adults and children at Tongi, Shitalakkhya, and Dhaleshwari, respectively. For dermal intake, the mean HQ for only chromium at Dhaleshwari exceeded the limit for both groups. The results emphasize the need for enhancement, proper operation, and maintenance of wastewater treatment facilities in order to meet the discharge quality standard.
Collapse
Affiliation(s)
- Mohsin Uddin
- Department of Textile Engineering, The International University of Scholars, Banani, Dhaka, Bangladesh E-mail:
| | - Faisal Bin Alam
- Department of Textile Engineering, The International University of Scholars, Banani, Dhaka, Bangladesh E-mail:
| |
Collapse
|
12
|
Ahmed AKA, El-Rawy M, Ibraheem AM, Al-Arifi N, Abd-Ellah MK. Forecasting of Groundwater Quality by Using Deep Learning Time Series Techniques in an Arid Region. SUSTAINABILITY 2023; 15:6529. [DOI: 10.3390/su15086529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Groundwater is regarded as the primary source of agricultural and drinking water in semi-arid and arid regions. However, toxic substances released from sources such as landfills, industries, insecticides, and fertilizers from the previous year exhibited extreme levels of groundwater contamination. As a result, it is crucial to assess the quality of the groundwater for agricultural and drinking activities, both its current use and its potential to become a reliable water supply for individuals. The quality of the groundwater is critical in Egypt’s Sohag region because it serves as a major alternative source of agricultural activities and residential supplies, in addition to providing drinking water, and residents there frequently have issues with the water’s suitability for human consumption. This research assesses groundwater quality and future forecasting using Deep Learning Time Series Techniques (DLTS) and long short-term memory (LSTM) in Sohag, Egypt. Ten groundwater quality parameters (pH, Sulfate, Nitrates, Magnesium, Chlorides, Iron, Total Coliform, TDS, Total Hardness, and Turbidity) at the seven pumping wells were used in the analysis to create the water quality index (WQI). The model was tested and trained using actual data over nine years from seven wells in Sohag, Egypt. The high quantities of iron and magnesium in the groundwater samples produced a high WQI. The proposed forecasting model provided good performances in terms of average mean-square error (MSE) and average root-mean-square error (RMSE) with values of 1.6091 × 10−7 and 4.0114 × 10−4, respectively. The WQI model’s findings demonstrated that it could assist managers and policymakers in better managing groundwater resources in arid areas.
Collapse
Affiliation(s)
| | - Mustafa El-Rawy
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
- Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi 11911, Saudi Arabia
| | | | - Nassir Al-Arifi
- Chair of Natural Hazards and Mineral Resources, Geology and Geophysics Department, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
13
|
Chakraborty TK, Islam MS, Ghosh GC, Ghosh P, Zaman S, Hossain MR, Habib A, Nice MS, Rahman MS, Islam KR, Netema BN, Das Shuvo S, Hossain N, Khan AS. Receptor model-based sources and risks appraisal of potentially toxic elements in the urban soils of Bangladesh. Toxicol Rep 2023; 10:308-319. [PMID: 36891509 PMCID: PMC9986644 DOI: 10.1016/j.toxrep.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Rapid urbanization and industrial development have prompted potentially toxic elements (PTEs) in urban soil in Bangladesh, which is a great concern for ecological and public health matters. The present study explored the receptor-based sources, probable human health and ecological risks of PTEs (As, Cd, Pb, Cr, Ni, and Cu) in the urban soil of the Jashore district, Bangladesh. The USEPA modified method 3050B and atomic absorption spectrophotometers were used to digest and evaluate the PTEs concentration in 71 soil samples collected from eleven different land use areas, respectively. The concentration ranges of As, Cd, Pb, Cr, Ni, and Cu in the studied soils were 1.8-18.09, 0.1-3.58, 0.4-113.26, 0.9-72.09, 2.1-68.23, and 3.82-212.57 mg/kg, respectively. The contamination factor (CF), pollution load index (PLI), and enrichment factor (EF) were applied to evaluate the ecological risk posed by PTEs in soils. Soil quality evaluation indices showed that Cd was a great contributor to soil pollution. The PLI values range was 0.48-2.82, indicating base levels to continuous soil degradation. The positive matrix factorization (PMF) model showed that As (50.3 %), Cd (38.8 %), Cu (64.7 %), Pb (81.8 %) and Ni (47.2 %) were derived from industrial sources and mixed anthropogenic sources, while Cr (78.1 %) from natural sources. The highest contamination was found in the metal workshop, followed by the industrial area, and brick filed site. Soil from all land use types revealed moderate to high ecological risk after evaluating probable ecological risks, and the descending order of single metal potential ecological risk was Cd > As > Pb > Cu > Ni > Cr. Ingestion was the primary route of exposure to potentially toxic elements for both adults and children from the study area soil. The overall non-cancer risk to human health is caused by PTEs for children (HI=0.65 ± 0.1) and adults (HI=0.09 ± 0.03) under USEPA safe limit (HI>1), while the cancer risks from exclusively ingesting As through soil were 2.10E-03 and 2.74E-04 for children and adults, respectively, exceeding the USEPA acceptable standard (>1E-04).
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Corresponding author.
| | - Md Shahnul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Prianka Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ripon Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ahsan Habib
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sozibur Rahman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Khandakar Rashedul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Baytune Nahar Netema
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Suvasish Das Shuvo
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Nazmul Hossain
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Jashore 7400, Bangladesh
| |
Collapse
|
14
|
Chakraborty TK, Chandra Ghosh G, Hossain MR, Islam MS, Habib A, Zaman S, Bosu H, Nice MS, Haldar M, Khan AS. Human health risk and receptor model-oriented sources of heavy metal pollution in commonly consume vegetable and fish species of high Ganges river floodplain agro-ecological area, Bangladesh. Heliyon 2022; 8:e11172. [PMID: 36325133 PMCID: PMC9618996 DOI: 10.1016/j.heliyon.2022.e11172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study was intended to assess heavy metal contents and sources in commonly consumed vegetables and fish collected from the Jashore district of Bangladesh and to evaluate the probable human health risks via the ingesting of those vegetables and fish species. A total of 130 vegetable and fish samples were analyzed for As, Mn, Cu, Cr, Ni, and Pb concentration by an atomic absorption spectrophotometer. Metals and metalloids like As, Pb, and Cr in vegetable species were greater than the maximum allowable concentration (MAC), while Pb and cu in fish species exceeded the MAC. Pollution evaluation index values were ranges from 0.40-10.35 and 1.53–2.78 for vegetable and fish species, respectively, indicating light to serious pollution. Lactuca sativa followed by Cucurbita moschata, Amaranthus gangeticus for vegetables and Channa punctate, Oreochromis mossambicus, followed by Dendrobranchiata for fish are the most contaminated food items. The positive matrix factorization model showed that As (81.9%), Ni (48%), Cr (49.6%), Mn (46%), Pb (44.3%), and Cu (44.4%) for vegetable species and As (86.9%), Ni (90.5%), Mn (67.6%), Pb (65.3%), Cr (57%) and Cu (46.2%) for fish species were resulting from agrochemical, atmospheric emission, irrigation, contaminated feed, and mixed sources. The self-organizing map and principle component analysis indicates three spatial patterns e.g., As–Mn–Cu, Pb–Cr, and Ni in vegetables and As–Mn–Cr, Cu–Ni, and Pb in fish samples. The THQ values for single elements were less than 1 (except As for vegetables and Pb for fish species) for all food items but the HI values for all of the vegetables (2.18E+00 to 2.04E+01) and fish (1.07E+00 to 9.39E+00) samples were exceeded the USEPA acceptable risk level (HI > 1E+00). While the cancer risks only induced by As for all vegetables and fish species, which exceeded the USEPA safe level (TCR>1E-04). Sensitivity analysis indicates that metal concentration was the most responsible factor for carcinogenic risk.
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh,Corresponding author.
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ripon Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Shahnul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ahsan Habib
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Himel Bosu
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monisankar Haldar
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnobati, Pulerhat, Jashore 7400, Bangladesh
| |
Collapse
|
15
|
Chakraborty TK, Islam MS, Ghosh GC, Ghosh P, Zaman S, Habib A, Hossain MR, Bosu H, Islam MR, Imran MA, Khan AS, Josy MSK. Human health risk and hydro-geochemical appraisal of groundwater in the southwest part of Bangladesh using GIS, water quality indices, and multivariate statistical approaches. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahnul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Prianka Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Ahsan Habib
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ripon Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Himel Bosu
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Rashidul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mostafa Al Imran
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Jashore, Bangladesh
| | - Md. Shahariea Karim Josy
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|