1
|
Paruch AM, Paruch L. Current status of microbial source tracking applications in constructed wetlands serving as nature-based solutions for water management and wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124076. [PMID: 38685556 DOI: 10.1016/j.envpol.2024.124076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Microbial source tracking (MST) has been recognised as an effective tool for determining the origins and sources of faecal contamination in various terrestrial and aquatic ecosystems. Thus, it has been widely applied in environmental DNA (eDNA) surveys to define specific animal- and human-associated faecal eDNA. In this context, identification of and differentiation between anthropogenic and zoogenic faecal pollution origins and sources are pivotal for the evaluation of waterborne microbial contamination transport and the associated human, animal, and environmental health risks. These concerns are particularly pertinent to diverse nature-based solutions (NBS) that are being applied specifically to secure water safety and human and ecosystem well-being, for example, constructed wetlands (CWs) for water and wastewater treatment. The research in this area has undergone a constant evolution, and there is a solid foundation of publications available across the world. Hence, there is an early opportunity to synthesise valuable information and relevant knowledge on this specific topic, which will greatly benefit future work by improving NBS design and performance. By selecting 15 representative research reports published over 20 years, we review the current state of MST technology applied for faecal-associated contamination measures in NBS/CWs throughout the world.
Collapse
Affiliation(s)
- Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway.
| | - Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| |
Collapse
|
2
|
Liu Z, Lin Y, Ge Y, Zhu Z, Yuan J, Yin Q, Liu B, He K, Hu M. Meta-analysis of microbial source tracking for the identification of fecal contamination in aquatic environments based on data-mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118800. [PMID: 37591102 DOI: 10.1016/j.jenvman.2023.118800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Microbial source tracking (MST) technology represents an innovative approach employed to trace fecal contamination in environmental water systems. The performance of primers may be affected by amplification techniques, target primer categories, and regional differences. To investigate the influence of these factors on primer recognition performance, a meta-analysis was conducted on the application of MST in water environments using three databases: Web of Science, Scopus, and PubMed (n = 2291). After data screening, 46 studies were included in the final analysis. The investigation encompassed Polymerase Chain Reaction (PCR)/quantitative PCR (qPCR) methodologies, dye-based (SYBR)/probe-based (TaqMan) techniques, and geographical differences of a human host-specific (HF183) primer and other 21 additional primers. The results indicated that the primers analyzed were capable of differentiating host specificity to a certain degree. Nonetheless, by comparing sensitivity and specificity outcomes, it was observed that virus-based primers exhibited superior specificity and recognition capacity, as well as a stronger correlation with human pathogenicity in water environments compared to bacteria-based primers. This finding highlights an important direction for future advancements. Moreover, within the same category, qPCR did not demonstrate significant benefits over conventional PCR amplification methods. In comparing dye-based and probe-based techniques, it was revealed that the probe-based method's advantage lay primarily in specificity, which may be associated with the increased propensity of dye-based methods to produce false positives. Furthermore, the heterogeneity of the HF183 primer was not detected in China, Canada, and Singapore respectively, indicating a low likelihood of regional differences. The variation among the 21 other primers may be attributable to regional differences, sample sources, detection techniques, or alternative factors. Finally, we identified that economic factors, climatic conditions, and geographical distribution significantly influence primer performance.
Collapse
Affiliation(s)
- Zejun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingying Lin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yanhong Ge
- Guangdong Infore Technology Co., Ltd, Foshan, 528322, China
| | - Ziyue Zhu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Bingjun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Maochuan Hu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
3
|
Paruch L, Paruch AM. Cross-tracking of faecal pollution origins, macronutrients, pharmaceuticals and personal care products in rural and urban watercourses. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:610-621. [PMID: 33600365 DOI: 10.2166/wst.2020.603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study describes microbial and chemical source tracking approaches for water pollution in rural and urban catchments. Culturable faecal indicator bacteria, represented by Escherichia coli, were quantified. Microbial source tracking (MST) using host-specific DNA markers was applied to identify the origins of faecal contamination. Chemical source tracking (CST) was conducted to determine contaminants of emerging concern (CEC) of human/anthropogenic origin, including pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs). In addition, the eutrophication-causing macronutrients nitrogen and phosphorus were studied. MST tests revealed both anthropogenic and zoogenic faecal origins, with a dominance of human sources in the urban stream; non-human/environmental sources were prevalent in the rural creek. CST analyses revealed a higher number of CECs in the urban stream than in the rural watercourse. Positive correlations between PPCPs and both E. coli and the human DNA marker were uncovered in the urban stream, while in the rural creek, PPCPs were only highly correlated with the anthropogenic marker. Interestingly, macronutrients were strongly associated with primary faecal pollution origins in both watercourses. This correlation pattern determines the main pollutant contributors (anthropogenic or zoogenic) to eutrophication.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens vei 43, 1433 Ås, Norway E-mail:
| | - Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens vei 43, 1433 Ås, Norway E-mail:
| |
Collapse
|
4
|
Gavrila AM, Zaharia A, Paruch L, Perrin FX, Sarbu A, Olaru AG, Paruch AM, Iordache TV. Molecularly imprinted films and quaternary ammonium-functionalized microparticles working in tandem against pathogenic bacteria in wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123026. [PMID: 32516646 DOI: 10.1016/j.jhazmat.2020.123026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Despite major efforts to combat pollution, the presence of pathogenic bacteria is still detected in surface water, soil and even crops due to poor purification of domestic and industrial wastewaters. Therefore, we have designed molecularly imprinted polymer films and quaternary ammonium-functionalized- kaolin microparticles to target specifically Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) in wastewaters and ensure a higher purification rate by working in tandem. According to the bacteriological indicators, a reduction by 90 % was registered for GNB (total coliforms and Escherichia coli O157) and by 77 % for GPB (Clostridium perfringens) in wastewaters. The reduction rates were confirmed when using pathogen genetic markers to quantify particular types of GNB and GPB, like Salmonella typhimurium (reduction up to 100 %),Campylobacter jejuni (reduction up to 70 %), Enterococcus faecalis (reduction up to 81 %), Clostridium perfringens (reduction up to 97 %) and Shiga toxin-producing Escherichia coli (reduction up to 64 %). In order to understand the bactericidal activity of prepared films and microparticles, we have performed several key analyses such as Cryo-TEM, to highlight the auto-assembly mechanism of components during the films formation, and 29 Si/13 C CP/MAS NMR, to reveal the way quaternary ammonium groups are grafted on the surface of kaolin microparticles.
Collapse
Affiliation(s)
- Ana-Mihaela Gavrila
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania
| | - Anamaria Zaharia
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania
| | - Lisa Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls vei 20, 1433, Aas, Norway
| | - Francois Xavier Perrin
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces et Environnement Marin-MAPIEM EA 4323 SeaTech-Ecole d'ingénieurs, BP 20132, 83957, La Garde Cedex, France
| | - Andrei Sarbu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania
| | | | - Adam Mariusz Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls vei 20, 1433, Aas, Norway.
| | - Tanta-Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania.
| |
Collapse
|
5
|
Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. WATER 2020. [DOI: 10.3390/w12112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contaminants of emerging concern (CECs) present a threat to the functioning of freshwater ecosystems. Their spread in the environment can affect both plant and animal health. Ecohydrology serves as a solution for assessment approaches (i.e., threat identification, ecotoxicological assessment, and cause–effect relationship analysis) and solution approaches (i.e., the elaboration of nature-based solutions: NBSs), mitigating the toxic effect of CECs. However, the wide array of potential molecular analyses are not fully exploited in ecohydrological research. Although the number of publications considering the application of molecular tools in freshwater studies has been steadily growing, no paper has reviewed the most prominent studies on the potential use of molecular technologies in ecohydrology. Therefore, the present article examines the role of molecular methods and novel omics technologies as essential tools in the ecohydrological approach to CECs management in freshwater ecosystems. It considers DNA, RNA and protein-level analyses intended to provide an overall view on the response of organisms to stress factors. This is compliant with the principles of ecohydrology, which emphasize the importance of multiple indicator measurements and correlation analysis in order to determine the effects of contaminants, their interaction with other environmental factors and their removal using NBS in freshwater ecosystems.
Collapse
|
6
|
Paruch L, Paruch AM, Eiken HG, Skogen M, Sørheim R. Seasonal dynamics of lotic bacterial communities assessed by 16S rRNA gene amplicon deep sequencing. Sci Rep 2020; 10:16399. [PMID: 33009479 PMCID: PMC7532223 DOI: 10.1038/s41598-020-73293-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/15/2020] [Indexed: 12/04/2022] Open
Abstract
Aquatic microbial diversity, composition, and dynamics play vital roles in sustaining water ecosystem functionality. Yet, there is still limited knowledge on bacterial seasonal dynamics in lotic environments. This study explores a temporal pattern of bacterial community structures in lotic freshwater over a 2-year period. The aquatic bacterial communities were assessed using Illumina MiSeq sequencing of 16S rRNA genes. Overall, the communities were dominated by α-, β-, and γ-Proteobacteria, Bacteroidetes, Flavobacteriia, and Sphingobacteriia. The bacterial compositions varied substantially in response to seasonal changes (cold vs. warm), but they were rather stable within the same season. Furthermore, higher diversity was observed in cold seasons compared to warm periods. The combined seasonal-environmental impact of different physico-chemical parameters was assessed statistically, and temperature, suspended solids, and nitrogen were determined to be the primary abiotic factors shaping the temporal bacterial assemblages. This study enriches particular knowledge on the seasonal succession of the lotic freshwater bacteria.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| | - Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway.
| | - Hans Geir Eiken
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| | - Monica Skogen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research - NIBIO, Høgskoleveien 7, 1433, Ås, Norway
| | - Roald Sørheim
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| |
Collapse
|
7
|
Faecal pollution affects abundance and diversity of aquatic microbial community in anthropo-zoogenically influenced lotic ecosystems. Sci Rep 2019; 9:19469. [PMID: 31857659 PMCID: PMC6923421 DOI: 10.1038/s41598-019-56058-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
The aquatic microbiota is known to be an important factor in the sustainability of the natural water ecosystems. However, the microbial community also might include pathogens, which result in very serious waterborne diseases in humans and animals. Faecal pollution is the major cause of these diseases. Therefore, it is of immense importance to assess the potential impact of faecal pollution, originating from both anthropogenic and zoogenic sources, on the profile of microbial communities in natural water environments. To this end, the microbial taxonomic diversity of lotic ecosystems in different regions of Norway, representing urban and rural areas, exposed to various levels of faecal pollution, was investigated over the course of a 1-year period. The highest microbial diversity was found in rural water that was the least faecally polluted, while the lowest was found in urban water with the highest faecal contamination. The overall diversity of the aquatic microbial community was significantly reduced in severely polluted water. In addition, the community compositions diverged between waters where the dominant pollution sources were of anthropogenic or zoogenic origin. The results provide new insight into the understanding of how faecal water contamination, specifically that of different origins, influences the microbial diversity of natural waters.
Collapse
|
8
|
Paruch L, Paruch AM, Sørheim R. DNA-based faecal source tracking of contaminated drinking water causing a large Campylobacter outbreak in Norway 2019. Int J Hyg Environ Health 2019; 224:113420. [PMID: 31748129 DOI: 10.1016/j.ijheh.2019.113420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022]
Abstract
During June 2019, an outbreak of campylobacteriosis occurred in Askøy, an island northwest of Bergen, Norway. According to the publicly available records, over 2000 residents fell ill and 76 were hospitalised, and two deaths were suspected to be associated with Campylobacter infection. By investigating the epidemic pattern and scope, an old caved drinking water holding pool was identified that had been faecally contaminated as indicated by the presence of Escherichia coli (E. coli). Furthermore, Campylobacter bacteria were found at several points in the water distribution system. In the escalated water health crisis, tracking down the infectious source became pivotal for the local municipality in order to take prompt and appropriate action to control the epidemic. A major task was to identify the primary faecal pollution source, which could further assist in tracking down the epidemic origin. Water from the affected pool was analysed using quantitative microbial source tracking (QMST) applying host-specific Bacteroidales 16S rRNA genetic markers. In addition, Campylobacter jejuni, Enterococcus faecalis, Clostridium perfringens and Shiga toxin-producing E. coli were detected. The QMST outcomes revealed that non-human (zoogenic) sources accounted predominantly for faecal pollution. More precisely, 69% of the faecal water contamination originated from horses.
Collapse
Affiliation(s)
- Lisa Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls Vei 20, 1433, Aas, Norway
| | - Adam M Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls Vei 20, 1433, Aas, Norway.
| | - Roald Sørheim
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls Vei 20, 1433, Aas, Norway
| |
Collapse
|
9
|
Paruch L, Paruch AM, Eiken HG, Sørheim R. Aquatic microbial diversity associated with faecal pollution of Norwegian waterbodies characterized by 16S rRNA gene amplicon deep sequencing. Microb Biotechnol 2019; 12:1487-1491. [PMID: 31290258 PMCID: PMC6801177 DOI: 10.1111/1751-7915.13461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host-specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70-90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo-zoogenic faecal water contamination on microbial diversity in lotic ecosystems.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Feces
- Genes, rRNA
- High-Throughput Nucleotide Sequencing
- Microbiota
- Norway
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Water Microbiology
- Water Pollution
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural ResourcesNorwegian Institute of Bioeconomy Research (NIBIO)Fredrik A. Dahls vei 201433AasNorway
| | - Adam M. Paruch
- Division of Environment and Natural ResourcesNorwegian Institute of Bioeconomy Research (NIBIO)Fredrik A. Dahls vei 201433AasNorway
| | - Hans Geir Eiken
- Division of Environment and Natural ResourcesNorwegian Institute of Bioeconomy Research (NIBIO)Fredrik A. Dahls vei 201433AasNorway
| | - Roald Sørheim
- Division of Environment and Natural ResourcesNorwegian Institute of Bioeconomy Research (NIBIO)Fredrik A. Dahls vei 201433AasNorway
| |
Collapse
|
10
|
A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas. WATER 2018. [DOI: 10.3390/w10060746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|