1
|
Mannina G, Bosco Mofatto PM, Cosenza A, Di Trapani D, Gulhan H, Mineo A, Makinia J. The effect of aeration mode (intermittent vs. continuous) on nutrient removal and greenhouse gas emissions in the wastewater treatment plant of Corleone (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171420. [PMID: 38438034 DOI: 10.1016/j.scitotenv.2024.171420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/10/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The paper reports the results of an experimental study aimed at comparing two configurations of a full-scale wastewater treatment plant (WWTP): conventional activated sludge (CAS) and oxic-settling-anaerobic process (OSA) with intermittent aeration (IA). A comprehensive monitoring campaign was carried out to assess multiple parameters for comparing the two configurations: carbon and nutrient removal, greenhouse gas emissions, respirometric analysis, and sludge production. A holistic approach has been adopted in the study with the novelty of including the carbon footprint (CF) contribution (as direct, indirect and derivative emissions) in comparing the two configurations. Results showed that the OSA-IA configuration performed better in total chemical oxygen demand (TCOD) and ortho-phosphate (PO4-P) removal. CAS performed better for Total Suspended Solids (TSS) removal showing a worsening of settling properties for OSA-IA. The heterotrophic yield coefficient and maximum growth rate decreased, suggesting a shift to sludge reduction metabolism in the OSA-IA configuration. Autotrophic biomass showed a reduced yield coefficient and maximum growth yield due to the negative effects of the sludge holding tank in the OSA-IA configuration on nitrification. The OSA-IA configuration had higher indirect emissions (30.5 % vs 21.3 % in CAS) from additional energy consumption due to additional mixers and sludge recirculation pumps. The CF value was lower for OSA-IA than for CAS configuration (0.36 kgCO2/m3 vs 0.39 kgCO2/m3 in CAS).
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128 Palermo, Italy.
| | | | - Alida Cosenza
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128 Palermo, Italy
| | - Hazal Gulhan
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128 Palermo, Italy; Environmental Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Antonio Mineo
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128 Palermo, Italy
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, Gdansk 80-233, Poland
| |
Collapse
|
2
|
Mulone S, Corsino SF, Capodici M, Torregrossa M. The anaerobic exposure time (AET) as a novel process parameter in the anaerobic side-stream reactor (ASSR)-based process for excess sludge minimization. WATER RESEARCH 2024; 254:121380. [PMID: 38412561 DOI: 10.1016/j.watres.2024.121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Minimization of excess sludge produced by wastewater treatment plants has become a topical theme nowadays. One of the most used approaches to achieve this aim is the anaerobic side-stream reactor (ASSR) process. This is considered affected by the hydraulic retention time (HRT) of the anaerobic reactor, the anaerobic sludge loading rate (ASLR) and the sludge interchange ratio (SIR), although, studies available in the literature did not reflect a clear relationship with the sludge minimization yields. To overcome this, a novel parameter namely anaerobic exposure time (AET) was defined and related to reduction of the observed yield coefficient (Yobs) in a lab-scale plant implementing the ASSR process. Furthermore, the AET was validated by performing a detailed and thorough review of previous literature. Excess sludge production was successfully reduced (10-60 %) with the increase of the AET (7.9-13 h/d), although maintaining the same HRT in the ASSR and a constant sludge interchange ratio (SIR) (100 %). A strong correlation (Pearson = 0.763) was found between the AET, and the Yobs reduction reported in previous studies, also indicating a linear relationship (R2 = 0.92) between these parameters. Contrarily, the correlation between the Yobs with the ASLR and the ASSR-HRT resulted moderate (Pearson = 0.186) or weak (Pearson=-0.346), respectively. Overall, while operating at low AET (< 6 h), maintenance and uncoupling metabolism were found the main sludge reduction mechanisms. Increasing the AET (>8 h) favoured the occurrence of extracellular polymeric substances (EPS) hydrolysis and endogenous decay mechanisms, which improved excess sludge reduction. To conclude, the AET could be considered a reliable parameter to be used for design or control purposes for the ASSR-based process.
Collapse
Affiliation(s)
- Sara Mulone
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128 Palermo, Italy
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128 Palermo, Italy.
| | - Marco Capodici
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128 Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128 Palermo, Italy
| |
Collapse
|
3
|
Corsino SF, Carabillò M, Cosenza A, De Marines F, Di Trapani D, Traina F, Torregrossa M, Viviani G. Insights on mechanisms of excess sludge minimization in an oxic-settling-anaerobic process under different operating conditions and plant configurations. CHEMOSPHERE 2023; 312:137090. [PMID: 36334748 DOI: 10.1016/j.chemosphere.2022.137090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/08/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In the present research, insights about the mechanisms of excess sludge minimization occurring in an oxic-settling-anaerobic (OSA) were provided. The investigation involved two systems operating in parallel. In particular, a conventional activated sludge (CAS) system as control and a system implementing the OSA process both having a pre-denitrification scheme were considered. Five periods (P1-P5) were studied, during which several operating conditions and configurations were tested. Specifically, the hydraulic retention time (HRT) in the anaerobic reactor of the OSA system (P1 8 h, P2-P3 12 h, P4 8 h, P5 12 h) and the return sludge from the anaerobic to the anoxic (scheme A) (P1-P2) or aerobic (scheme B) mainstream reactors (P3-P5) were investigated. The results highlighted that the excess sludge production in the OSA was lower in all the configurations (12-41%). In more detail, the observed yield (Yobs) was reduced from 0.50-0.89 gTSS gCOD-1 (control) to 0.22 -0.34 gTSS gCOD-1 in the OSA process. The highest excess sludge reduction (40%) was achieved when the OSA was operated according to scheme B and HRT of 12 h in the anaerobic reactor (P3). Generally, scheme A enabled the establishment of cell lysis and extracellular polymeric substances (EPS) destructuration, leading to a worsening of process performances when high anaerobic HRT (>8 h) was imposed. In contrast, scheme B enabled the establishment of maintenance metabolism in addition to the uncoupling metabolism, while cell lysis and EPS destruction were minimized. This allowed obtaining higher sludge reduction yield without compromising the effluent quality.
Collapse
Affiliation(s)
- Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy.
| | - Michele Carabillò
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Alida Cosenza
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Federica De Marines
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Daniele Di Trapani
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Francesco Traina
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| |
Collapse
|
4
|
Water Resource Recovery Facilities (WRRFs): The Case Study of Palermo University (Italy). WATER 2021. [DOI: 10.3390/w13233413] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The wastewater sector paradigm is shifting from wastewater treatment to resource recovery. In addition, concerns regarding sustainability during the operation have increased. In this sense, there is a need to break barriers (i.e., social, economic, technological, legal, etc.) for moving forward towards water resource recovery facilities and demonstration case studies can be very effective and insightful. This paper presents a new water resource recovery case study which is part of the Horizon 2020 EU Project “Achieving wider uptake of water-smart solutions—Wider Uptake”. The final aim is to demonstrate the importance of a resource recovery system based on the circular economy concept. The recovery facilities at Palermo University (Italy) are first presented. Afterwards, the resource recovery pilot plants are described. Preliminary results have underlined the great potential of the wastewater treatment plant in terms of resources recovery and the central role of the University in fostering the transition towards circular economy. The fermentation batch test highlighted a volatile fatty acids (VFAs) accumulation suitable for polyhydroxyalkanoates (PHAs) production. The results of static adsorption and desorption tests showed that the highest amount of adsorbed NH4+ was recorded for untreated and HCl-Na treated clinoptilolite.
Collapse
|