1
|
Baransi-Karkaby K, Yanuka-Golub K, Hassanin M, Massalha N, Sabbah I. In-situ biological biogas upgrading using upflow anaerobic polyfoam bioreactor: Operational and biological aspects. Biotechnol Bioeng 2024; 121:3471-3483. [PMID: 39036861 DOI: 10.1002/bit.28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
A high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H2 injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.33 h. The use of a porous diffuser, alongside high gas recirculation, led to a higher H2 liquid mass transfer, and subsequently to a better uptake for high CH4 content of 56% (starting from 26%). Our attempts to optimize both operational parameters (H2 flow rate and gas recirculation ratio, which is the total flow rate of recirculated gas over the total outlet of gas flow rate) were not initially successful, however, at a very high recirculation ratio (32) and flow rate (54 mL/h), a significant improvement of the hydrogen consumption was achieved. These operational conditions have in turn driven the methanogenic community toward the dominance of Methanosaetaceae, which out-competed Methanosarcinaceae. Nevertheless, highly stable methane production rates of 1.4-1.9 L CH4/Lreactor.day were observed despite the methanogenic turnover. During the different applied operational conditions, the bacterial community was especially impacted, resulting in substantial shifts of taxonomic groups. Notably, Aeromonadaceae was the only bacterial group positively correlated with increasing hydrogen consumption rates. The capacity of Aeromonadaceae to extracellularly donate electrons suggests that direct interspecies electron transfer (DIET) enhanced biogas upgrading. Overall, the proposed innovative biological in-situ biogas upgrading technology using the UAPB configuration shows promising results for stable, simple, and effective biological biogas upgrading.
Collapse
Affiliation(s)
- Katie Baransi-Karkaby
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Keren Yanuka-Golub
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Mahdi Hassanin
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| |
Collapse
|
2
|
Li M, Zhao X, Wu K, Liang C, Liu J, Yang H, Wang C, Yang B, Yin F, Zhang W. Spiral-Pipe Gas Anaerobic Digester. ACS OMEGA 2024; 9:23202-23208. [PMID: 38854509 PMCID: PMC11154718 DOI: 10.1021/acsomega.3c08872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 06/11/2024]
Abstract
The reduction of carbon dioxide to methane using hydrogen is an important process in biogas production. However, designing gas anaerobic digesters (GADs) based on this reaction presents several challenges. In this study, we developed an innovative spiral-pipe gas anaerobic digester (SGAD) to increase the displacement distance between the bubbles, thus prolonging the gas retention time and facilitating the reduction of CO2 to CH4 via H2. The process was successfully demonstrated by using a CO2/H2 ratio of 1:3 and a gas-feeding rate of 3.9 L Lr -1 d-1. During the experiment, more than 98% of the CO2 and 96% of the H2 were consumed, resulting in biogas containing ca. 86-96% CH4. Additionally, we applied our proposed evaluation methodology for assessing GAD performance to evaluate the performance of the SGAD. This methodology serves as a reference for evaluating and designing GAD systems. The innovative design of the SGAD and the corresponding evaluation methodology offer new insights into the design of reactors.
Collapse
Affiliation(s)
- Minghao Li
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Xingling Zhao
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Kai Wu
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Chengyue Liang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Jing Liu
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Hong Yang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Changmei Wang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Bin Yang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| | - Fang Yin
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| | - Wudi Zhang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| |
Collapse
|
3
|
Ale Enriquez F, Ahring BK. Strategies to overcome mass transfer limitations of hydrogen during anaerobic gaseous fermentations: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 377:128948. [PMID: 36963702 DOI: 10.1016/j.biortech.2023.128948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Fermentation of gaseous substrates such as carbon dioxide (CO2) has emerged as a sustainable approach for transforming greenhouse gas emissions into renewable fuels and biochemicals. CO2 fermentations are catalyzed by hydrogenotrophic methanogens and homoacetogens, these anaerobic microorganisms selectively reduce CO2 using hydrogen (H2) as electron donor. However, H2 possesses low solubility in liquid media leading to slow mass transport, limiting the reaction rates of CO2 reduction. Solving the problems of mass transport of H2 could boost the advance of technologies for valorizing industrial CO2-rich streams, like biogas or syngas. The application could further be extended to combustion flue gases or even atmospheric CO2. In this work, an overview of strategies for overcoming H2 mass transport limitations during methanogenic and acetogenic fermentation of H2 and CO2 is presented. The potential for using these strategies in future full-scale facilities and the knowledge gaps for these applications are discussed in detail.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
4
|
Dong H, Cheng J, Yue L, Xia R, Chen Z, Zhou J. Perfluorocarbon nanoemulsions as hydrogen carriers to promote the biological conversion of hydrogen and carbon dioxide to methane. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
5
|
Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P. Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. BIORESOURCE TECHNOLOGY 2022; 354:127178. [PMID: 35436538 DOI: 10.1016/j.biortech.2022.127178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
Collapse
Affiliation(s)
- Suman Bajracharya
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Adolf Krige
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
6
|
Ghofrani-Isfahani P, Tsapekos P, Peprah M, Kougias P, Zervas A, Zhu X, Yang Z, Jacobsen CS, Angelidaki I. Ex-situ biogas upgrading in thermophilic trickle bed reactors packed with micro-porous packing materials. CHEMOSPHERE 2022; 296:133987. [PMID: 35176296 DOI: 10.1016/j.chemosphere.2022.133987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Two thermophilic trickle bed reactors (TBRs) were packed with different packing densities with polyurethane foam (PUF) and their performance under different retention times were evaluated during ex-situ biogas upgrading process. The results showed that the TBR more tightly packed i.e. containing more layers of PUF achieved higher H2 utilization efficiency (>99%) and thus, higher methane content (>95%) in the output gas. The tightly packed micro-porous PUF enhanced biofilm immobilization, gas-liquid mass transfer and biomethanation efficiency. Moreover, applying a continuous high-rate nutrient trickling could lead to liquid overflow resulting in formation of non-homogenous biofilm and severe deduction of biomethanation efficiency. High-throughput 16S rRNA gene sequencing revealed that the liquid media were predominated by hydrogenotrophic methanogens. Moreover, members of Peptococcaceae family and uncultured members of Clostridia class were identified as the most abundant species in the biofilm. The proliferation of hydrogenotrophic methanogens together with syntrophic bacteria showed that H2 addition resulted in altering the microbial community in biogas upgrading process.
Collapse
Affiliation(s)
- Parisa Ghofrani-Isfahani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark.
| | - Maria Peprah
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, Thessaloniki, 57001, Greece
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Carsten S Jacobsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| |
Collapse
|
7
|
Antukh T, Lee I, Joo S, Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front Bioeng Biotechnol 2022; 10:833482. [PMID: 35557857 PMCID: PMC9085624 DOI: 10.3389/fbioe.2022.833482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Biogas produced from anaerobic digestion consists of 55–65% methane and 35–45% carbon dioxide, with an additional 1–2% of other impurities. To utilize biogas as renewable energy, a process called biogas upgrading is required. Biogas upgrading is the separation of methane from carbon dioxide and other impurities, and is performed to increase CH4 content to more than 95%, allowing heat to be secured at the natural gas level. The profitability of existing biogas technologies strongly depends on operation and maintenance costs. Conventional biogas upgrading technologies have many issues, such as unstable high-purity methane generation and high energy consumption. However, hydrogenotrophs-based biological biogas upgrading offers an advantage of converting CO2 in biogas directly into CH4 without additional processes. Thus, biological upgrading through applying hydrogenotrophic methanogens for the biological conversion of CO2 and H2 to CH4 receives growing attention due to its simplicity and high technological potential. This review analyzes the recent advance of hydrogenotrophs-based biomethanation processes, addressing their potential impact on public acceptance of biogas plants for the promotion of biogas production.
Collapse
Affiliation(s)
| | | | - Sunghee Joo
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| | - Hyunook Kim
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| |
Collapse
|
8
|
Pratofiorito G, Hackbarth M, Mandel C, Madlanga S, West S, Horn H, Hille-Reichel A. A membrane biofilm reactor for hydrogenotrophic methanation. BIORESOURCE TECHNOLOGY 2021; 321:124444. [PMID: 33285505 DOI: 10.1016/j.biortech.2020.124444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Biomethanation of CO2 has been proven to be a feasible way to produce methane with the employment of H2 as electron source. Subject of the present study is a custom-made membrane biofilm reactor for hydrogenotrophic methanation by archaeal biofilms cultivated on membrane surfaces. Reactor layout was adapted to allow for in situ biofilm analysis via optical coherence tomography. At a feeding ratio of H2/CO2 of 3.6, and despite the low membrane surface to reactor volume ratio of 57.9 m2 m-3, the maximum methane production per reactor volume reached up to 1.17 Nm3 m-3 d-1 at a methane content of the produced gas above 97% (v/v). These results demonstrate that the concept of membrane bound biofilms enables improved mass transfer by delivering substrate gases directly to the biofilm, thus, rendering the bottleneck of low solubility of hydrogen in water less drastic.
Collapse
Affiliation(s)
- Giorgio Pratofiorito
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Max Hackbarth
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; DVGW Research Centre at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT), Water Chemistry, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Carmen Mandel
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Siyavuya Madlanga
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; DVGW Research Centre at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT), Water Chemistry, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Stephanie West
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Harald Horn
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; DVGW Research Centre at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT), Water Chemistry, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Andrea Hille-Reichel
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| |
Collapse
|