1
|
Dai Y, Cai X, Wang S, Zhao C, Wang X, Yang X, Zhao X, Cheng X, Li J, Luo C, Zhang G. Synergistic effects of surfactant biostimulation and indigenous fungal bioaugmentation for enhanced bioremediation of PAH-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126304. [PMID: 40280266 DOI: 10.1016/j.envpol.2025.126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Surfactant biostimulation and autochthonous fungal bioaugmentation have emerged as promising strategies for the bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms driving their combined effects remain poorly understood. This study investigates the degradation mechanisms associated with bioaugmentation using the indigenous fungus Aspergillus fumigatus LJD-29 and surfactant Tween 80. By employing stable-isotope probing and high-throughput sequencing, we comprehensively assessed these processes. In our study, the results demonstrate that both Aspergillus fumigatus LJD-29 and Tween 80 significantly enhanced the degradation efficiency of phenanthrene and modified the microbial community composition, particularly among active degraders. Extracellular enzymes were identified as key players in the phenanthrene transformation process. Tween 80 improved the bioavailability of phenanthrene, stimulating the growth of native PAH degraders, with Pseudonocardia emerging as a prominent genus. Although the combined surfactant-fungal treatment did not substantially increase terminal degradation efficiency due to limitations in phenanthrene bioavailability, it accelerated the degradation rate. Additionally, Tween 80 helped restore the microbial community structure disrupted by fungal bioaugmentation. These findings provide valuable insights into the mechanisms of surfactant biostimulation and indigenous fungal bioaugmentation, highlighting the potential of this integrated bioremediation strategy for managing PAH-contaminated soils.
Collapse
Affiliation(s)
- Yeliang Dai
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315000, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuang Wang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
| | - Chunxia Zhao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiumin Yang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xuan Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming, 650214, China
| | - Xianghui Cheng
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jibing Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Chunling Luo
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
2
|
Chen X, Meng R, Geng M, Zhou J, Pu Y. Removal of benzo[a]pyrene by a highly degradable microbial community immobilized by modified wheat straw biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66742-66758. [PMID: 39638895 PMCID: PMC11666655 DOI: 10.1007/s11356-024-35717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Benzo[a]pyrene (BaP), a high-molecular-weight polycyclic aromatic hydrocarbon (HMW-PAHs), is a prevalent organic pollutant. Due to various environmental factors, the viability and degradation capacity of PAHs-degrading bacteria in contaminated soil are significantly reduced. Therefore, it is imperative to maintain microbial activity and enhance degradation efficiency. This study aims to optimize BaP removal by utilizing biochar-immobilized BaP for the enhancement of microbial communities' degradative potential. The immobilization of modified wheat straw biochar (MWBC) significantly enhanced the removal efficiency of BaP by a highly efficient microbial community enriched from oil-contaminated soil, achieving a large removal efficiency of 75.18% for BaP (5-20 mg/L) in a mineral salts medium in 12 d. The study also involved a detection of the species richness and intermediate metabolites of microbial community, as well as an assessment of the challenges and difficulties associated with managing real contaminated sites.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Rong Meng
- The Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010051, China
| | - Meihui Geng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiahui Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuewu Pu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Li Y, Wang Q, Chen H, Song C, Zheng Y, Chai Z, Zheng M. Multi-stage oxic biofilm system for pilot-scale treatment of coking wastewater: Pollutants removal performance, biofilm properties and microbial community. BIORESOURCE TECHNOLOGY 2024; 411:131271. [PMID: 39142418 DOI: 10.1016/j.biortech.2024.131271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
A multi-stage oxic biofilm system based on hydrophilic polyurethane foam was established and operated for advanced treatment of coking wastewater, in which distinct gradient variations of pollutants removal, biofilm properties and microbial community in the 5 stages were evaluated. The system rapidly achieved NH4+-N removal efficiency of 97.51 ± 2.29 % within 8 days. The biofilm growing attached on the carriers exhibited high biomass (≥10.29 g/L), which ensured sufficient microbial population. Additionally, the rising extracellular polymeric substance and declining proteins/polysaccharides ratios across stages suggested a dense-to-loose transition in the biofilm's structure, in response to the varying pollutant concentrations. The dominance of Nitrosomonas cluster in the first 3 stages and Nitrospira lineage in the following 2 stages facilitated the complete depletion of high NH4+-N concentration without NO2--N accumulation. Overall, the distinct biofilm property and community at each stage, shaped by the multi-stage configuration, maximized the pollutants removal efficiency.
Collapse
Affiliation(s)
- Yunlong Li
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qingbin Wang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hongwei Chen
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chao Song
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yize Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zimin Chai
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
4
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
5
|
Du H, Cheng JL, Li ZY, Zhong HN, Wei S, Gu YJ, Yao CC, Zhang M, Cai QY, Zhao HM, Mo CH. Molecular insights into the catabolism of dibutyl phthalate in Pseudomonas aeruginosa PS1 based on biochemical and multi-omics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171852. [PMID: 38518818 DOI: 10.1016/j.scitotenv.2024.171852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.
Collapse
Affiliation(s)
- Huan Du
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center for Statistical Science, Tsinghua University, Beijing 100084, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhi-Yong Li
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Huai-Ning Zhong
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Yu-Juan Gu
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Can-Can Yao
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Miaoyue Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Dai Y, Li J, Wang S, Cai X, Zhao X, Cheng X, Huang Q, Yang X, Luo C, Zhang G. Unveiling the synergistic mechanism of autochthonous fungal bioaugmentation and ammonium nitrogen biostimulation for enhanced phenanthrene degradation in oil-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133293. [PMID: 38141301 DOI: 10.1016/j.jhazmat.2023.133293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Autochthonous bioaugmentation and nutrient biostimulation are promising bioremediation methods for polycyclic aromatic hydrocarbons (PAHs) in contaminated agricultural soils, but little is known about their combined working mechanism. In this study, a microcosm trial was conducted to explore the combined mechanism of autochthonous fungal bioaugmentation and ammonium nitrogen biostimulation, using DNA stable-isotope-probing (DNA-SIP) and microbial network analysis. Both treatments significantly improved phenanthrene (PHE) removal, with their combined application producing the best results. The microbial community composition was notably altered by all bioremediation treatments, particularly the PHE-degrading bacterial and fungal taxa. Fungal bioaugmentation removed PAHs through extracellular enzyme secretion but reduced soil microbial diversity and ecological stability, while nitrogen biostimulation promoted PAH dissipation by stimulating indigenous soil degrading microbes, including fungi and key bacteria in the soil co-occurrence networks, ensuring the ecological diversity of soil microorganisms. The combination of both approaches proved to be the most effective strategy, maintaining a high degradation efficiency and relatively stable soil biodiversity through the secretion of lignin hydrolytic enzymes by fungi, and stimulating the reproduction of soil native degrading microbes, especially the key degraders in the co-occurrence networks. Our findings provide a fresh perspective of the synergy between fungal bioaugmentation and nitrogen biostimulation, highlighting the potential of this combined bioremediation approach for in situ PAH-contaminated soils.
Collapse
Affiliation(s)
- Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qihui Huang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiumin Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
7
|
Wang J, Wang S, Hu C. Advanced treatment of coking wastewater: Recent advances and prospects. CHEMOSPHERE 2024; 349:140923. [PMID: 38092162 DOI: 10.1016/j.chemosphere.2023.140923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Advanced treatment of refractory industrial wastewater is still a challenge. Coking wastewater is one of coal chemical wastewater, which contains various refractory organic pollutants. To meet the more and more rigorous discharge standard and increase the reuse ratio of coking wastewater, advanced treatment process must be set for treating the biologically treated coking wastewater. To date, several advanced oxidation processes (AOPs), including Fenton, ozone, persulfate-based oxidation, and iron-carbon micro-electrolysis, have been applied for the advanced treatment of coking wastewater. However, the performance of different advanced treatment processes changed greatly, depending on the components of coking wastewater and the unique characteristics of advanced treatment processes. In this review article, the state-of-the-art advanced treatment process of coking wastewater was systematically summarized and analyzed. Firstly, the major organic pollutants in the secondary effluents of coking wastewater was briefly introduced, to better understand the characteristics of the biologically treated coking wastewater. Then, the performance of various advanced treatment processes, including physiochemical methods, biological methods, advanced oxidation methods and combined methods were discussed for the advanced treatment of coking wastewater in detail. Finally, the conclusions and remarks were provided. This review will be helpful for the proper selection of advanced treatment processes and promote the development of advanced treatment processes for coking wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
8
|
Li X, Cao X, Zhang Z, Li Y, Zhang Y, Wang C, Fan W. Mechanism of phenanthrene degradation by the halophilic Pelagerythrobacter sp. N7. CHEMOSPHERE 2024; 350:141175. [PMID: 38211788 DOI: 10.1016/j.chemosphere.2024.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
PAHs has shown worldwide accumulation and causes a significant environmental problem especially in saline and hypersaline environments. Moderately halophilic bacteria could be useful for the bioremediation of PAH pollution in hypersaline environments. Pelagerythrobacter sp. N7 was isolated from the PAH-degrading consortium 5H, which was enriched from mixed saline soil samples collected in Shanxi Province, China. 16S rRNA in the genomic DNA revealed that strain N7 belonged to Pelagerythrobacter. Strain N7 exhibited a high tolerance to a wide range of salinities (1-10%) and was highly efficient under neutral to weak alkaline conditions (pH 6-9). The whole genome of strain N7 was sequenced and analyzed, revealing an abundance of catabolic genes. Using the whole genome information, we conducted preliminary research on key enzymes and gene clusters involved in the upstream and downstream PAH degradation pathways of strain N7, thereby inferring its degradation pathway for phenanthrene and naphthalene. This study adds to our understanding of PAH degradation in hypersaline environments and, for the first time, identifies a Pelagerythrobacter with PAH-degrading capability. Strain N7, with its high efficiency in phenanthrene degradation, represents a promising resource for the bioremediation of PAHs in hypersaline environments.
Collapse
Affiliation(s)
- Xiangjin Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Xinghong Cao
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yichun Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Yue Zhang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Weihua Fan
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
9
|
Xia M, Wang S, Chen B, Qiu R, Fan G. Enhanced Solubilization and Biodegradation of HMW-PAHs in Water with a Pseudomonas mosselii-Released Biosurfactant. Polymers (Basel) 2023; 15:4571. [PMID: 38232027 PMCID: PMC10708242 DOI: 10.3390/polym15234571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The treatment and reuse of wastewater are crucial for the effective utilization and protection of global water resources. Polycyclic aromatic hydrocarbons (PAHs), as one of the most common organic pollutants in industrial wastewater, are difficult to remove due to their relatively low solubility and bioavailability in the water environment. However, biosurfactants with both hydrophilic and hydrophobic groups are effective in overcoming these difficulties. Therefore, a biosurfactant-producing strain Pseudomonas mosselii MP-6 was isolated in this study to enhance the bioavailability and biodegradation of PAHs, especially high-molecular-weight PAHs (HMW-PAHs). FTIR and LC-MS analysis showed that the MP-6 surfactant belongs to rhamnolipids, a type of biopolymer, which can reduce the water surface tension from 73.20 mN/m to 30.61 mN/m at a critical micelle concentration (CMC = 93.17 mg/L). The enhanced solubilization and biodegradation of PAHs, particularly HMW-PAHs (when MP-6 was introduced), were also demonstrated in experiments. Furthermore, comprehensive environmental stress tolerance tests were conducted to confirm the robustness of the MP-6 biosurfactant, which signifies the potential adaptability and applicability of this biosurfactant in diverse environmental remediation scenarios. The results of this study, therefore, have significant implications for future applications in the treatment of wastewater containing HMW-PAHs, such as coking wastewater.
Collapse
Affiliation(s)
- Mingqian Xia
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | | | | | | | | |
Collapse
|
10
|
Mou B, Gong G, Wu S. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: Combination of instrumental analysis and theoretical calculation. CHEMOSPHERE 2023; 341:140017. [PMID: 37657699 DOI: 10.1016/j.chemosphere.2023.140017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a common class of petroleum hydrocarbons, widely encountered in both environment and industrial pollution sources. Owing to their toxicity, environmental persistence, and potential bioaccumulation properties, a mounting interest has been kindled in addressing the remediation of PAHs. Biodegradation is widely employed for the removal and remediation of PAHs due to its low cost, lack of second-contamination and ease of operation. This paper reviews the degradation efficiency of degradation and the underlying mechanisms exhibited by algae, bacteria, and fungi in remediation. Additionally, it delved into the application of modern instrumental analysis techniques and theoretical investigations in the realm of PAH degradation. Advanced instrumental analysis methods such as mass spectrometry provide a powerful tool for identifying intermediates and metabolites throughout the degradation process. Meanwhile, theoretical calculations could guide the optimization of degradation processes by revealing the reaction mechanisms and energy changes in PAH degradation. The combined use of instrumental analysis and theoretical calculations allows for a comprehensive understanding of the degradation mechanisms of PAHs and provides new insights and approaches for the development of environmental remediation technologies.
Collapse
Affiliation(s)
- Bolin Mou
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyi Gong
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
11
|
Xu P, Chen X, Li K, Meng R, Pu Y. Metagenomic Analysis of Microbial Alliances for Efficient Degradation of PHE: Microbial Community Structure and Reconstruction of Metabolic Network. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12039. [PMID: 36231339 PMCID: PMC9565075 DOI: 10.3390/ijerph191912039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons are a widespread organic pollutant worldwide. In this study, a highly efficient phenanthrene (PHE)-degrading microbial community was enriched from oil extraction soil, which could degrade 500 mg/L PHE within 4 days. Using 16S rRNA sequencing, the dominant bacteria in this community at the phylum level were found to be Proteobacteria, Actinobacteria, and Firmicutes. Metagenomic annotation of genes revealed the metabolic pathways and the contribution of different bacteria to the degradation process. Pseudomonadaceae contributed multiple functional genes in the degradation process. This study revealed the functional genes, metabolic pathways, and microbial interactions of the microbial community, which are expected to provide guidance for practical management.
Collapse
Affiliation(s)
- Pan Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoxiao Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kai Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Rong Meng
- The Husbandry Technology Promotion Center of Inner Mongolia, Hohhot 010051, China
| | - Yuewu Pu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Shlosberg Y, Farber Y, Hasson S, Bulatov V, Schechter I. Identification of bacteria by poly-aromatic hydrocarbon biosensors. Anal Bioanal Chem 2022; 414:3153-3160. [PMID: 35129639 DOI: 10.1007/s00216-022-03947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Human health is consistently threatened by different species of pathogenic bacteria. To fight the spread of diseases, it is important to develop rapid methods for bacterial identification. Over the years, different kinds of biosensors were developed for this cause. Another environmental risk is poly-aromatic hydrocarbons (PAHs) that may be emitted from industrial facilities and pollute environmental water and soil. One of the methods for their purification is conducted by the addition of bacteria that can degrade the PAHs, while the bacteria can be filtrated at the end of the process. Although many studies reported monitoring of the PAHs degradation by fluorescence, not much attention was dedicated to studying the influence of the PAHs on the intrinsic fluorescence of the degrading bacteria. In this work, we apply synchronous fluorescence (SF) measurements to study the ability of the 5 PAHs: 9-Antracene carboxylic acid (9ACA), Pyrene, Perylene, Pentacene, and Chrysene to interact with bacteria and change its fluorescence spectra. We show that upon incubation of each PAH with the bacterium E. coli, only the 2 PAHs 9ACA and Perylene cause an intensity decrease in the emission at λ = 300-375 nm, which derives from the emission of tyrosine and tryptophan (TT). Also, we show that upon incubation of 9ACA and Perylene with 5 different pathogenic bacteria, the intensity increase or decrease in the TT emission is unique to each bacterial species. Based on this observation, we suggest that the PAHs 9ACA and Perylene can be utilized as biosensors for bacterial identification.
Collapse
Affiliation(s)
- Yaniv Shlosberg
- Schulich Faculty of Chemistry, 3200003, Technion, Haifa, Israel.
| | - Yair Farber
- Quality and Reliability Engineering Department, Kinneret Academic College, 1513200, Zemach, Israel.,Grand Water Research Institute, 3200003, Technion, Haifa, Israel
| | - Salah Hasson
- Schulich Faculty of Chemistry, 3200003, Technion, Haifa, Israel
| | - Valery Bulatov
- Schulich Faculty of Chemistry, 3200003, Technion, Haifa, Israel
| | | |
Collapse
|
13
|
Tamang M, Paul KK. Advances in treatment of coking wastewater - a state of art review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:449-473. [PMID: 35050895 DOI: 10.2166/wst.2021.497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coking wastewater poses a serious threat to the environment due to the presence of a wide spectrum of refractory substances such as phenolic compounds, polycyclic aromatic hydrocarbons and heterocyclic nitrogenous compounds. These toxic substances are difficult to treat using conventional treatment methods alone. In recent years much attention has been given to the effective treatment of coking wastewater. Thus, this review seeks to provide a brief overview of recent developments that have taken place in the treatment of coking wastewater. In addition, this article addresses the complexity and the problems associated with treatment followed by a discussion on biological methods with special focus on bioaugmentation. As coking wastewater is refractory in nature, some of the studies have been related to improving the biodegradability of wastewater. The final section focuses on the integrated treatment methods that have emerged as the best solution for tackling the highly unmanageable coking wastewater. Attention has also been given to emerging microwave technology which has tremendous potential for treatment of coking wastewater.
Collapse
Affiliation(s)
- Markus Tamang
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| | - Kakoli Karar Paul
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| |
Collapse
|
14
|
Thomas S, Veettil NT, Subbiah K. Isolation, characterization and optimization of chrysene degradation using bacteria isolated from oil-contaminated water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2737-2748. [PMID: 34850690 DOI: 10.2166/wst.2021.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are uncharged, non-polar molecules generated from natural and anthropogenic activities, where the emissions from anthropogenic activities predominate. Chrysene is a high molecular weight PAH, which is found to be highly recalcitrant and mutagenic in nature. The aim of this study was to isolate chrysene-degrading microorganisms from oil-contaminated water and to enhance their degradative conditions using design expert. From the various samples collected, 19 bacterial strains were obtained through enrichment culture and the one which showed highest activity was identified by 16S rRNA sequencing as Bacillus halotolerans. Under optimum conditions of 100 mg/L chrysene concentration, 1,000 mg/L nitrogen source, and pH 6, B. halotolerans exhibited 90% chrysene degradation on sixth day. Positive results for the enzymes laccase and catechol 1,2 dioxygenase confirmed the ability for chrysene degradation by the isolated strain. Major metabolic intermediate determined in gas chromatography-mass spectrometry (GCMS) analysis was diisooctyl phthalate. Hence it can be concluded that B. halotolerans can be a promising candidate for the removal of high molecular weight (HMW) hydrocarbons from contaminated environments.
Collapse
Affiliation(s)
- Smeera Thomas
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641114, Tamil Nadu, India E-mail: ; Department of Biotechnology, Sahrdaya College of Engineering and Technology, Kodakara, Thrissur 680684, Kerala, India
| | - Nitha Thalakkale Veettil
- Department of Biotechnology, Sahrdaya College of Engineering and Technology, Kodakara, Thrissur 680684, Kerala, India
| | - Kavitha Subbiah
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641114, Tamil Nadu, India E-mail:
| |
Collapse
|
15
|
Chettri B, Singha NA, Singh AK. Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch Microbiol 2021; 203:5793-5803. [PMID: 34519861 DOI: 10.1007/s00203-021-02567-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
We report kinetics of Assam crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2, both isolated from Assam refinery sediments. The isolates exhibited appreciable degrees of hydrophobicity, emulsification index and biosurfactant production. Crude oil degradation efficiency of isolates was assessed in (1) liquid medium amended with 1% v/v crude oil and (2) microcosm sediments (125 mg crude oil/ 10 g sand). In liquid culture, biodegradation rate (k) and half-life (t1/2) values were found to be 0.038 day-1 and 18.09 days for P. aeruginosa AKS1, and 0.020 day-1 and 33.97 days in case of Bacillus sp. AKS2, respectively. In microcosm sediments, the estimated k and t 1/2 values were 0.014 day-1 and 50 days for P. aeruginosa AKS1, and 0.011 day-1 and 61.34 days in case of Bacillus sp. AKS2. The level of nutrient treatment in microcosm sand sediment was 125 µg N and 62.5 µg P/g sediment in case of P. aeruginosa AKS1 and 375 µg N and 37.5 µg P/g sediment in case of Bacillus sp. AKS2. In microcosms without inorganic nutrients, values of k and t1/2 were found to be 0.007 day-1 and 100 days for P. aeruginosa AKS1 and for Bacillus sp. AKS2, the respective values were 0.005 day-1 and 150.68 days. Our data provides important information for predictive hydrocarbon degradation in liquid medium and contaminated sediments.
Collapse
Affiliation(s)
- Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Ningombam A Singha
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|