1
|
Qiu JY, Mah R, Brand LA, Pang X, Barnett M, Diggle M, Tipples G. Impact of Sample Storage Time and Temperature on the Stability of Respiratory Viruses and Enteric Viruses in Wastewater. Microorganisms 2024; 12:2459. [PMID: 39770662 PMCID: PMC11679355 DOI: 10.3390/microorganisms12122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Wastewater-based surveillance (WBS) has been widely used to track SARS-CoV-2 as well as many other viruses in communities during the COVID pandemic and post-pandemic. However, it is still not clear how temperature and storage time would influence the stability of viruses in wastewater. In this study, we assessed the stability of SARS-CoV-2, pepper mild mottle virus (PMMoV), influenza viruses A (IAV) and B (IBV), respiratory syncytial virus (RSV), and enteric viruses in raw wastewater stored at room temperature, 4 °C, and -20 °C for 3 and 6 days. SARS-CoV-2, PMMoV, IAV, and enteric viruses were found to be stable up to 6 days after storing at room temperature or 4 °C. SARS-CoV-2 and RSV were more susceptible to freeze-thaw cycles compared to PMMoV and enteric viruses, which were relatively stable for up to 6 days stored at -20 °C. Low detection of IBV in wastewater made it difficult to evaluate the impact. Based on our findings, we conclude that short-term storage or transportation of wastewater samples within 6 days at ambient temperature or 4 °C is acceptable for the majority of these viruses. Freezing samples at -20 °C for even short periods is not recommended for WBS of respiratory viruses. The data obtained from this study can provide guidance for quality assurance purposes from the operational aspects of wastewater surveillance.
Collapse
Affiliation(s)
- Judy Y. Qiu
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Richardson Mah
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
| | - Logan A. Brand
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Melodie Barnett
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
| | - Mathew Diggle
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Graham Tipples
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| |
Collapse
|
2
|
Cutrupi F, Cadonna M, Postinghel M, Foladori P. SARS-CoV-2 removal in municipal wastewater treatment plants: Focus on conventional activated sludge, membrane bioreactor and anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167434. [PMID: 37774861 DOI: 10.1016/j.scitotenv.2023.167434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
This work focuses on the removal of SARS-CoV-2 RNA in the various stages of a full-scale municipal WWTP characterised by two biological processes in parallel: (i) conventional activated sludge (CAS) and (ii) membrane bioreactor (MBR). The monitoring was carried out during the Omicron wave in 2022, a period characterised by a high concentration of SARS-CoV-2 in influent wastewater. The average concentration of SARS-CoV-2 in influent wastewater was 3.7 × 104 GU/L. In the primary sedimentation, the removal of SARS-CoV-2 was not appreciable. The largest log removal value of SARs-CoV-2 occurred in the biological stages, with 1.8 ± 0.9 and 2.2 ± 0.7 logs in CAS and MBR systems. The mean concentrations of SARS-CoV-2 in the CAS and MBR effluents were 6.8 × 102 GU/L and 6.4 × 102 GU/L, respectively. The MBR effluent showed more negative samples, because small particles are retained by membrane and cake layer. The analysis of the different types of sludge confirmed the accumulation of SARS-CoV-2 in primary (5.2 × 104 GU/L) and secondary sludge (3.5 × 104 GU/L), due to the affinity of enveloped viruses towards biosolids. A SARS-CoV-2 concentration in the digested sludge equal to 4.8 × 104 GU/L denotes a negligible reduction in the mesophilic anaerobic digester at temperature of 31-33 °C.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Center Agriculture Food Environment (C3A) - University of Trento, via Edmund Mach 1, 38098 San Michele all' Adige, TN, Italy
| | - Maria Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - Mattia Postinghel
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123 Trento, Italy.
| |
Collapse
|
3
|
Ando H, Ahmed W, Iwamoto R, Ando Y, Okabe S, Kitajima M. Impact of the COVID-19 pandemic on the prevalence of influenza A and respiratory syncytial viruses elucidated by wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:162694. [PMID: 36894088 PMCID: PMC9991320 DOI: 10.1016/j.scitotenv.2023.162694] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 05/23/2023]
Abstract
Since the COVID-19 pandemic, a decrease in the prevalence of Influenza A virus (IAV) and respiratory syncytial virus (RSV) has been suggested by clinical surveillance. However, there may be potential biases in obtaining an accurate overview of infectious diseases in a community. To elucidate the impact of the COVID-19 on the prevalence of IAV and RSV, we quantified IAV and RSV RNA in wastewater collected from three wastewater treatment plants (WWTPs) in Sapporo, Japan, between October 2018 and January 2023, using highly sensitive EPISENS™ method. From October 2018 to April 2020, the IAV M gene concentrations were positively correlated with the confirmed cases in the corresponding area (Spearman's r = 0.61). Subtype-specific HA genes of IAV were also detected, and their concentrations showed trends that were consistent with clinically reported cases. RSV A and B serotypes were also detected in wastewater, and their concentrations were positively correlated with the confirmed clinical cases (Spearman's r = 0.36-0.52). The detection ratios of IAV and RSV in wastewater decreased from 66.7 % (22/33) and 42.4 % (14/33) to 4.56 % (12/263) and 32.7 % (86/263), respectively in the city after the COVID-19 prevalence. The present study demonstrates the potential usefulness of wastewater-based epidemiology combined with the preservation of wastewater (wastewater banking) as a tool for better management of respiratory viral diseases.
Collapse
Affiliation(s)
- Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Ryo Iwamoto
- Shionogi & Co. Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan; AdvanSentinel Inc., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Yoshinori Ando
- Shionogi & Co. Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
4
|
Wurtz N, Boussier M, Souville L, Penant G, Lacoste A, Colson P, La Scola B, Aherfi S. Simple Wastewater Preparation Protocol Applied to Monitor the Emergence of the Omicron 21L/BA.2 Variant by Genome Sequencing. Viruses 2023; 15:268. [PMID: 36851484 PMCID: PMC9965846 DOI: 10.3390/v15020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Detecting and monitoring viruses in wastewater samples have been reported as useful ways of tracking SARS-CoV-2 epidemic trends. However, there is currently no unanimously recognised method of processing samples to identify and quantify SARS-CoV-2 variants in wastewater. We aimed to implement a method that was as simple as possible in order to be used universally. In a study performed between January 2022 and June 2022 in the city of Marseille, France, we first evaluated the impact of the sample preservation strategy. We then compared ultracentrifugation to ultrafiltration and several steps of filtration to determine the optimal approach for virus concentration. As a proof-of-concept, the definitive protocol was applied to next-generation sequencing of SARS-CoV-2 in wastewater to monitor the emergence of the Omicron variant in the city. For sewage water to be processed in the week following the sampling, storage at +4 °C is sufficient, with less than 1 Ct loss. Filtration with a 5 µm syringe filter, then with a 0.8 µm filtration unit, followed by ultrafiltration was the optimal protocol, leading to an average increase of 3.24 Ct when the starting Ct was on average 38 in the wastewater. This made it possible to observe the emergence of the Omicron 21L/BA.2 variant after Omicron 21K/BA.1 by genome sequencing over a period ranging from 20 February to 10 April 2022 in agreement with observations based on patient data. To conclude, by using a simple method requiring only basic filters and a centrifuge as equipment, it is possible to accurately track the relative incidence rates and the emergence of SARS-CoV-2 variants based on sewage samples.
Collapse
Affiliation(s)
- Nathalie Wurtz
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Maelle Boussier
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Louis Souville
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Gwilherm Penant
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| | - Alexandre Lacoste
- Bataillon des Marins Pompiers de la ville de Marseille, 13005 Marseille, France
| | - Philippe Colson
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| | - Bernard La Scola
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| | - Sarah Aherfi
- MEPHI, Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, 13005 Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
5
|
Cancela F, Ramos N, Smyth DS, Etchebehere C, Berois M, Rodríguez J, Rufo C, Alemán A, Borzacconi L, López J, González E, Botto G, Thornhill SG, Mirazo S, Trujillo M. Wastewater surveillance of SARS-CoV-2 genomic populations on a country-wide scale through targeted sequencing. PLoS One 2023; 18:e0284483. [PMID: 37083889 PMCID: PMC10121012 DOI: 10.1371/journal.pone.0284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Davida S Smyth
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Claudia Etchebehere
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Mabel Berois
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jesica Rodríguez
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Caterina Rufo
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alicia Alemán
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julieta López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth González
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Germán Botto
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Starla G Thornhill
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Santiago Mirazo
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, New York, United States of America
| |
Collapse
|
6
|
Cutrupi F, Cadonna M, Manara S, Postinghel M, La Rosa G, Suffredini E, Foladori P. The wave of the SARS-CoV-2 Omicron variant resulted in a rapid spike and decline as highlighted by municipal wastewater surveillance. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102667. [PMID: 35615435 PMCID: PMC9122782 DOI: 10.1016/j.eti.2022.102667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d- 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Maria Cadonna
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Mattia Postinghel
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|