1
|
Govinda Raj M, Mahalingam S, Gnanarani SV, Jayashree C, Ganeshraja AS, Pugazhenthiran N, Rahaman M, Abinaya S, Senthil B, Kim J. TiO 2 nanorod decorated with MoS 2 nanospheres: An efficient dual-functional photocatalyst for antibiotic degradation and hydrogen production. CHEMOSPHERE 2024; 357:142033. [PMID: 38615961 DOI: 10.1016/j.chemosphere.2024.142033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 μmol g-1, which is ∼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.
Collapse
Affiliation(s)
- Muniyandi Govinda Raj
- Centre for Herbal Pharmacology and Environmental Sustainability Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, 603 103, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Solomon Vasthi Gnanarani
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Charmakani Jayashree
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Ayyakannu Sundaram Ganeshraja
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, 600 077, Tamil Nadu, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Srinivasan Abinaya
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Bakthavatchalam Senthil
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India.
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|