1
|
Nibrad D, Shiwal A, Tadas M, Katariya R, Kale M, Kotagale N, Umekar M, Taksande B. Therapeutic modulation of mitochondrial dynamics by agmatine in neurodegenerative disorders. Neuroscience 2025; 569:43-57. [PMID: 39890051 DOI: 10.1016/j.neuroscience.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Mitochondrial dysfunction is a pivotal factor in the pathogenesis of neurodegenerative disorders, driving neuronal degeneration through mechanisms involving oxidative stress, impaired energy production, and dysregulated calcium homeostasis. Agmatine, an endogenous polyamine derived from arginine, has garnered attention for its neuroprotective properties, including anti-inflammatory, anti-oxidative, and antiapoptotic effects. Recent studies have highlighted the potential of agmatine in preserving mitochondrial function and mitigating neurodegeneration, making it a promising candidate for therapeutic intervention. One of the key mechanisms by which agmatine exerts its neuroprotective effects is through the maintenance of mitochondrial homeostasis. Agmatine has been shown to modulate mitochondrial dynamics, promoting mitochondrial fusion and fission balance essential for cellular energy metabolism and signaling. Moreover, agmatine acts as a regulator of mitochondrial permeability transition pore (mPTP) opening, preventing excessive calcium influx and subsequent mitochondrial dysfunction. Despite promising findings, challenges such as optimizing agmatine's pharmacokinetics, determining optimal dosing regimens, and elucidating its precise molecular targets within mitochondria remain to be addressed. Future research directions should focus on developing targeted delivery systems for agmatine, investigating its interactions with mitochondrial proteins, and conducting well-designed clinical trials to evaluate its therapeutic efficacy and safety profile in neurodegenerative disorders. Overall, agmatine emerges as a novel therapeutic agent with the potential to modulate mitochondrial homeostasis and alleviate neurodegenerative pathology, offering new avenues for treating these debilitating conditions.
Collapse
Affiliation(s)
- Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, (M.S.) 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India.
| |
Collapse
|