1
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Zhao M, Ma J, Zhang L, Qi H. Engineering strategies for enhanced heterologous protein production by Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:32. [PMID: 38247006 PMCID: PMC10801990 DOI: 10.1186/s12934-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Microbial proteins are promising substitutes for animal- and plant-based proteins. S. cerevisiae, a generally recognized as safe (GRAS) microorganism, has been frequently employed to generate heterologous proteins. However, constructing a universal yeast chassis for efficient protein production is still a challenge due to the varying properties of different proteins. With progress in synthetic biology, a multitude of molecular biology tools and metabolic engineering strategies have been employed to alleviate these issues. This review first analyses the advantages of protein production by S. cerevisiae. The most recent advances in improving heterologous protein yield are summarized and discussed in terms of protein hyperexpression systems, protein secretion engineering, glycosylation pathway engineering and systems metabolic engineering. Furthermore, the prospects for efficient and sustainable heterologous protein production by S. cerevisiae are also provided.
Collapse
Affiliation(s)
- Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jianfan Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Abedi H, Shahpiri A. Functional characterization of a manganese superoxide dismutase from Avicennia marina: insights into its role in salt, hydrogen peroxide, and heavy metal tolerance. Sci Rep 2024; 14:406. [PMID: 38172216 PMCID: PMC10764323 DOI: 10.1038/s41598-023-50851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Avicennia marina is a salt-tolerance plant with high antioxidant and antibacterial potential. In the present work, a gene encoding MnSOD from Avicennia marina (AmSOD2) was cloned in the expression vectors pET28a. The resulting constructs were transformed into Escherichia coli strains Rosetta (DE3). Following the induction with Isopropyl β-D-1-thiogalactopyranoside, the protein His-AmSOD2 was expressed but dominantly found in the insoluble fraction of strain R-AmSOD2. Due to detection of mitochondrial transit peptide in the amino acid sequence of AmSOD2, the transit peptide was removed and AmSOD2 without transit peptide (tAmSOD2) was expressed in E. coli and dominantly found in the soluble fraction. The enzyme His-tAmSOD2 exhibited a molecular mass of 116 kDa in native condition. Nevertheless, in reducing conditions the molecular mass is 28 kDa indicating the enzyme His-tAmSOD2 is a tetramer protein. As shown by ICP analysis there is one mole Mn2+ in each monomer. The Pure His-tAmSOD2 was highly active in vitro, however the activity was almost three-fold lower than His-AmSOD1. Whereas the high stability of the recombinant His-AmSOD1was previously shown after incubation in a broad range pH and high temperature, His-tAmSOD2 was stable up to 50 °C and pH 6 for 1 h. The gene expression analysis showed that the gene encoding AmSOD2 is expressed in root, shoot and leaves of A. marina. In addition, the results show that the expression in the leaves was enhanced after treatment of plant with NaCl, H2O2, Cd2+ and Ni2+ indicating the important role of MnSOD in the resistant mechanism of mangroves.
Collapse
Affiliation(s)
- Hamid Abedi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
4
|
Lu R, Li X, Hu J, Zhang Y, Wang Y, Jin L. Expression of a triple mutational des-pGlu brazzein in transgenic mouse milk. FEBS Open Bio 2022; 12:1336-1343. [PMID: 35417094 PMCID: PMC9249319 DOI: 10.1002/2211-5463.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Brazzein has excellent potential for use as a sweetener because of its high level of sweetening potency and stability against extreme temperature and pH. It is extracted from the tropical and difficult—to‐cultivate African plant Pentadiplandra brazzeana, which hampers its commercial viability. Here we report the mammary‐specific expression of wildtype or triple mutational (H31R/E36D/E41A) des‐pGlu brazzeins in the milk of transgenic mice. Using enzyme‐linked immunoassay (ELISA), western blot, and sweetness intensity testing, we confirmed that the triple mutation made the des‐pGlu brazzein molecule 10,000 times sweeter than sucrose in a weight base, even after 10 min of incubation at 100 °C; in addition, the triple mutant was also significantly sweeter than the wildtype des‐pGlu brazzein. This study provides new insights for producing brazzein or brazzein‐sweetened milk from animals for use in food and healthcare applications.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Xiaoming Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jian Hu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yong Zhang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yancui Wang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Le Jin
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| |
Collapse
|
5
|
Neiers F, Belloir C, Poirier N, Naumer C, Krohn M, Briand L. Comparison of Different Signal Peptides for the Efficient Secretion of the Sweet-Tasting Plant Protein Brazzein in Pichia pastoris. Life (Basel) 2021; 11:life11010046. [PMID: 33450886 PMCID: PMC7828362 DOI: 10.3390/life11010046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Brazzein is a small sweet-tasting protein found in the red berries of a West African evergreen shrub, Pentadiplandra brazzeana Baillon. Brazzein is highly soluble and stable over a large pH range and at high temperatures, which are characteristics that suggest its use as a natural sweetener. However, Pentadiplandra brazzeana culture is difficult at a large scale, limiting the natural source of brazzein. Heterologous expression of brazzein has been established in numerous systems, including bacteria, yeast, and transgenic plants. Brazzein requires four disulfide bonds to be active in eliciting an intense sweet taste, and the yeast Pichia pastoris appears to be one of the best options for obtaining functional brazzein in high quantities. Employing yeast secretion in the culture medium allows us to obtain fully active brazzein and facilitate purification later. To increase yeast secretion, we compared seven different signal peptides to successfully achieve brazzein secretion using the yeast P. pastoris. The brazzein proteins corresponding to these signal peptides elicited activation of the sweet taste receptor functionally expressed in a cellular assay. Among these tested signal peptides, three resulted in the secretion of brazzein at high levels.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (F.N.); (C.B.); (N.P.)
| | - Christine Belloir
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (F.N.); (C.B.); (N.P.)
| | - Nicolas Poirier
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (F.N.); (C.B.); (N.P.)
| | - Christian Naumer
- BRAIN AG, Darmstaedter Str. 34-36, 64673 Zwingenberg, Germany; (C.N.); (M.K.)
| | - Michael Krohn
- BRAIN AG, Darmstaedter Str. 34-36, 64673 Zwingenberg, Germany; (C.N.); (M.K.)
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (F.N.); (C.B.); (N.P.)
- Correspondence: ; Tel.: +33-380-681615
| |
Collapse
|