1
|
Tang B, Du Y, Wang J. TAZ-hTrap: A Rationally Designed, Disulfide-Stapled Tead Helical Hairpin Trap to Selectively Capture Hippo Signaling Taz With Potent Antigynecological Tumor Activity. J Mol Recognit 2025; 38:e3111. [PMID: 39626959 DOI: 10.1002/jmr.3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 02/01/2025]
Abstract
Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu Du
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Wang
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Li K, Liu L. Computational design and experimental confirmation of a disulfide-stapled YAP helix α1-trap derived from TEAD4 helical hairpin to selectively capture YAP α1-helix with potent antitumor activity. J Comput Aided Mol Des 2024; 38:31. [PMID: 39177727 DOI: 10.1007/s10822-024-00572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Human Hippo signaling pathway is an evolutionarily conserved regulator network that controls organ development and has been implicated in various cancers. Transcriptional enhanced associate domain-4 (TEAD4) is the final nuclear effector of Hippo pathway, which is activated by Yes-associated protein (YAP) through binding to two separated YAP regions of α1-helix and Ω-loop. Previous efforts have all been addressed on deriving peptide inhibitors from the YAP to target TEAD4. Instead, we herein attempted to rationally design a so-called 'YAP helixα1-trap' based on the TEAD4 to target YAP by using dynamics simulation and energetics analysis as well as experimental assays at molecular and cellular levels. The trap represents a native double-stranded helical hairpin covering a specific YAP-binding site on TEAD4 surface, which is expected to form a three-helix bundle with the α1-helical region of YAP, thus competitively disrupting TEAD4-YAP interaction. The hairpin was further stapled by a disulfide bridge across its two helical arms. Circular dichroism characterized that the stapling can effectively constrain the trap into a native-like structured conformation in free state, thus largely minimizing the entropy penalty upon its binding to YAP. Affinity assays revealed that the stapling can considerably improve the trap binding potency to YAP α1-helix by up to 8.5-fold at molecular level, which also exhibited a good tumor-suppressing effect at cellular level if fused with TAT cell permeation sequence. In this respect, it is considered that the YAP helixα1-trap-mediated blockade of Hippo pathway may be a new and promising therapeutic strategy against cancers.
Collapse
Affiliation(s)
- Kaipeng Li
- School of Chemistry and Chemical Engineering, Jinggangshan University, No. 28, Xueyuan Road, Ji'an, 343009, China
| | - Lijun Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, No. 28, Xueyuan Road, Ji'an, 343009, China.
| |
Collapse
|
3
|
Integrated in silico-in vitro molecular modeling and design of halogenated phenylalanine-containing antihypertensive peptide inhibitors with halogen bonds to target human angiotensin-I-converting enzyme. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Zhu H, Xu S, Wu J, Hu J, Mao X. Molecular design and rational optimization of synergistic effect between the two wings of a roughly orthogonal cation-π-π stacking system at nasopharyngeal carcinoma YAP1-TEAD4 parallel Helix-Helix interaction interface. J Mol Recognit 2022; 35:e2986. [PMID: 36326001 DOI: 10.1002/jmr.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023]
Abstract
The Yes-associated protein-1 (YAP1) is an essential regulator of human Hippo signaling pathway and functions through interaction with TEA domain-4 (TEAD4) transcription factor involved in the tumorigenesis of nasopharyngeal cancer. Previously, a parallel helix-helix interaction (PHHI) was identified as the key hotspot at YAP1-TEAD4 complex interface and has been exploited as an attractive druggable target to disrupt the complex. In this study, we investigated a roughly orthogonal cation-π-π stacking system across the crystal PHHI packing interface by integrating computational modeling and binding assay, which forms between one YAP1 helical residue Phe69 and two TEAD4 helical residues Phe373/Lys376. A synergistic effect between cation-π and π-π interactions was observed; they separately represent two wings of the stacking system. The π-electron is primarily responsible for the synergistic effect. Combination between diverse aromatic/charged amino acids. as well as neutral alanine on the cation-π-π stacking, revealed that the presence of aromatic tryptophan and charged arginine at, respectively, the residues 373 and 376 of TEAD4 helix can considerably improve PHHI binding affinity by ~6-fold, whereas neutral alanine substitution on each residue and on both would reduce the affinity significantly, confirming a strong synergistic effect involved in the roughly orthogonal cation-π-π stacking system at YAP1-TEAD4 PHHI interface.
Collapse
Affiliation(s)
- Hongyuan Zhu
- Institute of Otolaryngology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Shanjing Xu
- Department of Clinical Medicine, Shaoxing University, Shaoxing, China
| | - Jiaojiao Wu
- Institute of Otolaryngology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Hu
- Institute of Otolaryngology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Xinli Mao
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
5
|
Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells 2021; 10:cells10102715. [PMID: 34685695 PMCID: PMC8534579 DOI: 10.3390/cells10102715] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network that regulates essential processes such as organ size, cell proliferation, migration, stemness and apoptosis. Alterations in this pathway are commonly found in solid tumors and can lead to hyperproliferation, resistance to chemotherapy, compensation for mKRAS and tumor immune evasion. As the terminal effectors of the Hippo pathway, the transcriptional coactivators YAP1/TAZ and the transcription factors TEAD1–4 present exciting opportunities to pharmacologically modulate the Hippo biology in cancer settings, inflammation and regenerative medicine. This review will provide an overview of the progress and current strategies to directly and indirectly target the YAP1/TAZ protein–protein interaction (PPI) with TEAD1–4 across multiple modalities, with focus on recent small molecules able to selectively bind to TEAD, block its autopalmitoylation and inhibit YAP1/TAZ–TEAD-dependent transcription in cancer.
Collapse
|
6
|
Gu H, Liu L. Molecular modeling and rational design of noncovalent halogen⋯oxygen⋯hydrogen motif at the complex interface of EGFR kinase domain with RALT peptide. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhang D, Wu H, Zhao J. Computational design and experimental substantiation of conformationally constrained peptides from the complex interfaces of transcriptional enhanced associate domains with their cofactors in gastric cancer. Comput Biol Chem 2021; 94:107569. [PMID: 34500324 DOI: 10.1016/j.compbiolchem.2021.107569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Transcriptional enhanced associate domains (Teads) are the downstream effectors of the hippo signaling pathway and have been recognized as attractive druggable targets of gastric cancer. The biological function of Teads is regulated by diverse cofactors. In this study, the intermolecular interactions of Teads with their cognate cofactors were systematically characterized at structural, thermodynamic and dynamic levels. The Teads possess a double-stranded helical hairpin that is surrounded by three independent structural elements β-sheet, α-helix and Ω-loop of cofactor proteins and plays a central role in recognition and association with cofactors. A number of functional peptides were split from the hairpin region at Tead-cofactor complex interfaces, which, however, cannot maintain in native conformation without the support of protein context and would therefore incur a considerable entropy penalty upon competitively rebinding to the interfaces. Here, we further used disulfide and hydrocarbon bridges to cyclize and staple the hairpin and helical peptides, respectively. The chemical modification strategies were demonstrated to effectively constrain peptide conformation into active state and to largely reduce peptide flexibility in free state, thus considerably improving their affinity. Since the cyclization and stapling only minimize the indirect entropy cost but do not influence the direct enthalpy effect upon peptide binding, the designed conformationally constrained peptides can retain in their native selectivity over different cofactors. This is particularly interesting because it means that the cyclized/stapled, affinity-improved peptides can specifically compete with their parent Teads for the cofactor arrays as they share consistent target specificity.
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou 061014, China
| | - Hongna Wu
- Cangzhou Institute for Food and Drug Control, Cangzhou 061003, China
| | - Jing Zhao
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou 061014, China.
| |
Collapse
|
8
|
He B, Wu T, He P, Lv F, Liu H. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization. Chem Biol Drug Des 2021; 97:1129-1136. [PMID: 33283479 DOI: 10.1111/cbdd.13813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022]
Abstract
Human transcriptional enhanced associate domain (TEAD) family consists of four paralogous transcription factors that function to modulate gene expression by interacting with YAP-like coactivators and have been recognized as potential therapeutic targets of diverse diseases including lung cancer and gastric tumor. Here, we attempt to explore the systematic interaction profile between the 4 TEAD proteins and the peptides derived from the binding sites of 8 known YAP-like coactivators, in order to analyze the binding affinity and recognition specificity of these peptides toward the TEAD family, and to design hydrocarbon-stapled/cyclized peptides that can target the specific interaction profile for each coactivator. Structural, energetic, and dynamic investigations of TEAD-coactivator interactions reveal that the coactivators adopt three independent secondary structure regions (β-strand, α-helix, and Ω-loop) to surround on the surface of TEAD proteins, in which the α-helical and Ω-loop regions are primarily responsible for the interactions. Five α-helical peptides and four Ω-loop peptides are derived from the 8 YAP-like coactivators, and their systematic binding profile toward the 4 TEAD proteins is created, and hydrocarbon stapling and cyclization strategies are employed to constrain the free α-helical and Ω-loop peptides into their native conformations, respectively, thus effectively promoting peptide binding to TEADs. The all-hydrocarbon and disulfide bridges are designed to point out the TEAD-peptide complex interface, which would not disrupt the direct intermolecular interaction between the TEAD and peptide. Therefore, the stapling and cyclization only improve peptide binding affinity to these TEADs, but do not alter peptide recognition specificity over different TEADs.
Collapse
Affiliation(s)
- Bo He
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wu
- Department of Thoracic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Third Army Medical University, Chongqing, China
| | - Fenglin Lv
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongxiang Liu
- Department of Thoracic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
9
|
Gao S, Wang Y, Ji L. Rational design and chemical modification of TEAD coactivator peptides to target hippo signaling pathway against gastrointestinal cancers. J Recept Signal Transduct Res 2020; 41:408-415. [PMID: 32912021 DOI: 10.1080/10799893.2020.1818093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human Hippo signaling pathway has been recognized as a new and promising therapeutic target of gastrointestinal cancers, which is regulated by the intermolecular recognition between the TEA domain (TEAD) transcription factor and its prime coactivators. The coactivator proteins adopt two hotspot sites, namely α-helix and Ω-loop, to interact with TEAD. Here, we demonstrate that both the α-helix and Ω-loop peptides cannot maintain in structured state when splitting from the full-length coactivator proteins; they exhibit a large intrinsic disorder in free state that prevents the coactivator peptide recognition by TEAD. Rational design is used to optimize the interfacial residues of coactivator α-helix peptides, which can effectively improve the favorable direct readout effect upon the peptide binding to TEAD. Chemical modification is employed to constrain the free α-helix peptide into native ordered conformation. The method introduces an all-hydrocarbon bridge across i and i + 4 residues to stabilize the helical structure of a free coactivator peptide, which can considerably reduce the unfavorable indirect readout effect upon the peptide binding to TEAD. The all-hydrocarbon bridge is designed to point out of the TEAD-peptide complex interface, which would not disrupt the direct intermolecular interaction between the TEAD and peptide. Therefore, the stapling only improves peptide affinity, but does not alter peptide specificity, to TEAD. Affinity assay confirms that the binding potency of coactivator α-helix peptides is improved substantially by >5-fold upon the rational design and chemical modification. Structural analysis reveals that the optimized/stapled peptides can form diverse nonbonded interactions such as hydrogen bonds and hydrophobic contacts with TEAD, thus conferring stability and specificity to the TEAD-peptide complex systems.
Collapse
Affiliation(s)
- Shuxia Gao
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Yingchao Wang
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Lijuan Ji
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| |
Collapse
|