1
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
2
|
Faizan M, Karabulut F, Alam P, Yusuf M, Tonny SH, Adil MF, Sehar S, Ahmed SM, Hayat S. Nanobionics: A Sustainable Agricultural Approach towards Understanding Plant Response to Heavy Metals, Drought, and Salt Stress. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:974. [PMID: 36985867 PMCID: PMC10058739 DOI: 10.3390/nano13060974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the current scenario, the rising concentration of heavy metals (HMs) due to anthropogenic activities is a severe problem. Plants are very much affected by HM pollution as well as other abiotic stress such as salinity and drought. It is very important to fulfil the nutritional demands of an ever-growing population in these adverse environmental conditions and/or stresses. Remediation of HM in contaminated soil is executed through physical and chemical processes which are costly, time-consuming, and non-sustainable. The application of nanobionics in crop resilience with enhanced stress tolerance may be the safe and sustainable strategy to increase crop yield. Thus, this review emphasizes the impact of nanobionics on the physiological traits and growth indices of plants. Major concerns and stress tolerance associated with the use of nanobionics are also deliberated concisely. The nanobionic approach to plant physiological traits and stress tolerance would lead to an epoch of plant research at the frontier of nanotechnology and plant biology.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Fadime Karabulut
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - S. Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Steinbach JC, Fait F, Mayer HA, Kandelbauer A. Monodisperse Porous Silica/Polymer Nanocomposite Microspheres with Tunable Silica Loading, Morphology and Porosity. Int J Mol Sci 2022; 23:ijms232314977. [PMID: 36499304 PMCID: PMC9737779 DOI: 10.3390/ijms232314977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Hybrid organic/inorganic nanocomposites combine the distinct properties of the organic polymer and the inorganic filler, resulting in overall improved system properties. Monodisperse porous hybrid beads consisting of tetraethylene pentamine functionalized poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) particles and silica nanoparticles (SNPs) were synthesized under Stoeber sol-gel process conditions. A wide range of hybrid organic/silica nanocomposite materials with different material properties was generated. The effects of n(H2O)/n(TEOS) and c(NH3) on the hybrid bead properties particle size, SiO2 content, median pore size, specific surface area, pore volume and size of the SNPs were studied. Quantitative models with a high robustness and predictive power were established using a statistical and systematic approach based on response surface methodology. It was shown that the material properties depend in a complex way on the process factor settings and exhibit non-linear behaviors as well as partly synergistic interactions between the process factors. Thus, the silica content, median pore size, specific surface area, pore volume and size of the SNPs are non-linearly dependent on the water-to-precursor ratio. This is attributed to the effect of the water-to-precursor ratio on the hydrolysis and condensation rates of TEOS. A possible mechanism of SNP incorporation into the porous polymer network is discussed.
Collapse
Affiliation(s)
- Julia C. Steinbach
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Fabio Fait
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hermann A. Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Kandelbauer
- Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
- Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering (MAP), University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Correspondence: ; Tel.: +49-(0)7121-271-2009
| |
Collapse
|
4
|
Metal-Phenolic Network-Functionalized Magnetic Nanoparticles for Enzyme Immobilization. Appl Biochem Biotechnol 2022; 194:5305-5321. [PMID: 35751761 DOI: 10.1007/s12010-022-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Metal-phenolic network (MPN) coating is an emerging class of surface functionalization method and has attracted ever-growing interest in areas of bioengineering and biotechnology. Although various applications for MPN coatings, including drug delivery, cytoprotection, and antimicrobial surfaces, have been studied in the form of films and capsules, their interaction with enzyme molecules and the subsequent influence of biocatalytic properties are poorly understood. Herein, MPN coatings composed of different types of metal ions (CuII, FeIII, ZnII, MnII, AuIV) coordinated with tannic acid (TA) were fabricated on Fe3O4 nanoparticles as a facile nanoplatform for immobilizing alcohol dehydrogenase (ADH). The results show that the different polarization capacities of metal ions (i.e., Lewis acids) could affect the hydrophilicity and hydrophobicity of the coordinated MPN coatings, while the enzyme immobilization rate, biocatalytic activity, and stability are in turn influenced by the surface properties of the MPN coatings. Among the different metal ions, the Fe3O4-TA-ZnII showed the highest enzyme immobilizing efficiency (91.53%) and catalytic activity (60.45 U/mg ADH). Besides, the enzyme re-usability and tolerance to extreme conditions were both enhanced after immobilization. These results highlight an advanced strategy for the interfacial construction of hybrid heterogeneous biocatalytic systems with potential use in biomedical applications.
Collapse
|
5
|
Oxygen and Drug-Carrying Periodic Mesoporous Organosilicas for Enhanced Cell Viability under Normoxic and Hypoxic Conditions. Int J Mol Sci 2022; 23:ijms23084365. [PMID: 35457183 PMCID: PMC9024945 DOI: 10.3390/ijms23084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
Over the last decade, inorganic/organic hybrids have been exploited for oxygen-carrying materials and drug delivery. Its low-cost synthesis, controlled shape and size, and stability have made it a viable delivery strategy for therapeutic agents. Rutin (quercetin-3-O-rutinoside) is a bioflavonoid found in fruits and vegetables. Rutin has a variety of pharmaceutical applications, but its low water solubility reduces its stability and bioavailability. As a result, we introduce a new and stable nanosystem for loading a low-soluble drug (rutin) into oxygen-carrying periodic mesoporous organosilicas (PMO-PFCs). Over the course of 14 days, this nanosystem provided a sustained oxygen level to the cells in both normoxic and hypoxic conditions. At different pH values, the drug release (rutin) profile is also observed. Furthermore, the rutin-coated PMO-PFCs interacted with both healthy and malignant cells. The healthy cells have better cell viability on the rutin-coated oxygen-carrying PMO-PFCs, while the malignant cells have a lower cell viability.
Collapse
|
6
|
Zhou J, Wang K, Ding S, Zeng L, Miao J, Cao Y, Zhang X, Tian G, Bian XW. Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater 2022; 141:364-373. [PMID: 35063709 DOI: 10.1016/j.actbio.2022.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023]
Abstract
Tumor vasculature-targeting therapy either using angiogenesis inhibitors or vascular disrupting agents offers an important new avenue for cancer therapy. In this work, a tumor-specific catalytic nanomedicine for enhanced tumor ablation accompanied with tumor vasculature disruption and angiogenesis inhibition was developed through a cascade reaction with enzyme glucose oxidase (GOD) modified on Fe-based metal organic framework (Fe-MOF) coupled with anti-VEGFR2.The GOD enzyme could catalyze the intratumoral glucose decomposition to trigger tumor starvation and yet provide abundant hydrogen peroxide as the substrate for Fenton-like reaction catalyzed by Fe-MOF to produce sufficient highly toxic hydroxyl radicals for enhanced chemodynamic therapy and instantly attacked tumor vascular endothelial cells to destroy the existing vasculature, while the anti-VEGFR2 antibody guided the nanohybrids to target blood vessels and block the VEGF-VEGFR2 connection to prevent angiogenesis. Both in vitro and in vivo results demonstrated the smart nanohybrids could cause the tumor cell apoptosis and vasculature disruption, and exhibited enhanced tumor regression in A549 xenograft tumor-bearing mice model. This study suggested that synergistic targeting tumor growth and its vasculature network would be more promising for curing solid tumors. STATEMENT OF SIGNIFICANCE: Cooperative destruction of tumor cells and tumor vasculature offers a potential avenue for cancer therapy. Under this premise, a tumor-specific catalytic nanomedicine for enhanced tumor ablation accompanied with tumor vasculature disruption and new angiogenesis inhibition was developed through a cascade reaction with glucose oxidase modified on the surface of iron-based metal organic framework coupled with VEGFR2 antibody. The resulting data demonstrated that a therapeutic regimen targeting tumor growth as well as its vasculature with both existing vasculature disruption and neovasculature inhibition would be more potential for complete eradication of tumors.
Collapse
Affiliation(s)
- Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Kai Wang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China
| | - Xiao Zhang
- International Joint Research Center for Precision Biotherapy, and Department of Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing 40038, PR China.
| |
Collapse
|
7
|
Zhang Z, Xie L, Ju Y, Dai Y. Recent Advances in Metal-Phenolic Networks for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100314. [PMID: 34018690 DOI: 10.1002/smll.202100314] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nanomedicine integrates different functional materials to realize the customization of carriers, aiming at increasing the cancer therapeutic efficacy and reducing the off-target toxicity. However, efforts on developing new drug carriers that combine precise diagnosis and accurate treatment have met challenges of uneasy synthesis, poor stability, difficult metabolism, and high cytotoxicity. Metal-phenolic networks (MPNs), making use of the coordination between phenolic ligands and metal ions, have emerged as promising candidates for nanomedicine, most notably through the service as multifunctional theranostic nanoplatforms. MPNs present unique properties, such as rapid preparation, negligible cytotoxicity, and pH responsiveness. Additionally, MPNs can be further modified and functionalized to meet specific application requirements. Here, the classification of polyphenols is first summarized, followed by the introduction of the properties and preparation strategies of MPNs. Then, their recent advances in biomedical sciences including bioimaging and anti-tumor therapies are highlighted. Finally, the main limitations, challenges, and outlooks regarding MPNs are raised and discussed.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
8
|
Balestri D, Mazzeo PP, Perrone R, Fornari F, Bianchi F, Careri M, Bacchi A, Pelagatti P. Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Biopharmanet-TEC Università di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Paolo P. Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Biopharmanet-TEC Università di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Roberto Perrone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Fabio Fornari
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Federica Bianchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Centro Interdipartimentale per l'Energia e l'Ambiente (CIDEA) Università di Parma Parco Area delle Scienze 42 43124 Parma Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare (SITEIA.PARMA) Università di Parma Parco Area delle Scienze 181/A 43124 Parma Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Biopharmanet-TEC Università di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
- Centro Interuniversitario di Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
9
|
Balestri D, Mazzeo PP, Perrone R, Fornari F, Bianchi F, Careri M, Bacchi A, Pelagatti P. Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angew Chem Int Ed Engl 2021; 60:10194-10202. [PMID: 33512039 DOI: 10.1002/anie.202017105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 11/09/2022]
Abstract
Metal-organic frameworks (MOFs) give the opportunity of confining guest molecules into their pores even by a post-synthetic protocol. PUM168 is a Zn-based MOF characterized by microporous cavities that allows the encapsulation of a significant number of guest molecules. The pores engineered with different binding sites show a remarkable guest affinity towards a series of natural essential oils components, such as eugenol, thymol and carvacrol, relevant for environmental applications. Exploiting single crystal X-ray diffraction, it was possible to step-wisely monitor the rather complex three-components guest exchange process involving dimethylformamide (DMF, the pristine solvent) and binary mixtures of the flavoring agents. A picture of the structural evolution of the DMF-to-guest replacement occurring inside the MOF crystal was reached by a detailed single-crystal-to-single-crystal monitoring. The relation of the supramolecular arrangement in the pores with selective guests release was then investigated as a function of time and temperature by static headspace GC-MS analysis.
Collapse
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Paolo P Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Roberto Perrone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy
| | - Fabio Fornari
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy
| | - Federica Bianchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Centro Interdipartimentale per l'Energia e l'Ambiente (CIDEA), Università di Parma, Parco Area delle Scienze 42, 43124, Parma, Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare (SITEIA.PARMA), Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124, Parma, Italy.,Centro Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
10
|
Mazzeo PP, Balestri D, Bacchi A, Pelagatti P. Stabilization of liquid active guests via nanoconfinement into a flexible microporous metal–organic framework. CrystEngComm 2021. [DOI: 10.1039/d1ce00899d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nanoconfinement of the three liquid guests within a MOF has been fully investigated in terms of host–guest interactions and framework rearrangement.
Collapse
Affiliation(s)
- Paolo P. Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Centro Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
11
|
Novel multi-targeted nanoparticles for targeted co-delivery of nucleic acid and chemotherapeutic agents to breast cancer tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111494. [DOI: 10.1016/j.msec.2020.111494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
|
12
|
Ezzati N, Mahjoub AR, Shokrollahi S, Amiri A, Abolhosseini Shahrnoy A. Novel Biocompatible Amino Acids-Functionalized Three-dimensional Graphene Foams: As the Attractive and Promising Cisplatin Carriers for Sustained Release Goals. Int J Pharm 2020; 589:119857. [PMID: 32898631 DOI: 10.1016/j.ijpharm.2020.119857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Application of amino acids-immobilized porous materials for drug delivery studies has been attracted a lot of attention in the recent years. In this study, amino acids-grafted graphene foams were prepared by anchoring of Alanine (Ala), Cysteine (Cys) and Glycine (Gly) amino acids on the surface of graphene oxide (GO) nanostructures and used as the novel biocompatible carriers to control releasing of the cisplatin as the cytotoxic anticancer drug. The characterization of prepared compounds was done by the FT-IR, Raman, TGA, N2 adsorption-desorption isotherms, SEM, and TEM techniques. Adsorption and in vitro release behavior of amino acids-functionalized foams were studied using ICP standard method. The results show that the drug loading amount and the drug releasing rate are significantly enhanced upon functionalization process. The Ala-Foam sample with the larger surface area and pore volume showed a higher loading content (4.53%) than other samples. In addition, the MTT test on the two MCF-7 and HepG2 human cancer cell lines exhibited an acceptable biocompatibility and sustainable drug releasing from the carriers up to 48 h, leading to the dosage frequency decrease and the patient compliance improvement.
Collapse
Affiliation(s)
- Nasim Ezzati
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box. 14155-4383, Tehran, Iran.
| | - Ali Reza Mahjoub
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box. 14155-4383, Tehran, Iran.
| | - Sudabeh Shokrollahi
- Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| | - Ahmad Amiri
- Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| | | |
Collapse
|
13
|
Ekpenyong EE, Louis H, Anyama CA, Ogar JO, Utsu PM, Ayi AA. Experimental and density functional theory studies on the adsorption behavior of selected gas molecules on Mg(II) coordination polymer constructed with 1,3,5-benzenetricarboxylates. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Patel AS, Lakshmibalasubramaniam S, Nayak B, Tripp C, Kar A, Sappati PK. Improved stability of phycobiliprotein within liposome stabilized by polyethylene glycol adsorbed cellulose nanocrystals. Int J Biol Macromol 2020; 163:209-218. [DOI: 10.1016/j.ijbiomac.2020.06.262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/21/2023]
|
15
|
Dou J, Zhao F, Fan W, Chen Z, Guo X. Preparation of non-spherical vaterite CaCO3 particles by flash nano precipitation technique for targeted and extended drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Jabalera Y, Oltolina F, Prat M, Jimenez-Lopez C, Fernández-Sánchez JF, Choquesillo-Lazarte D, Gómez-Morales J. Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E199. [PMID: 31979272 PMCID: PMC7074876 DOI: 10.3390/nano10020199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/04/2022]
Abstract
In the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 ± 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 ± 2 mL mg-1, and the cooperativity coefficient r is 6 ± 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the ζ-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Francesca Oltolina
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez-Lopez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Jorge F. Fernández-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| |
Collapse
|
17
|
Beretta GL. The Molecular Oncology of Drug Resistance: Targets, Drugs and Chemical Biology. Curr Med Chem 2019; 26:6018-6019. [PMID: 31518215 DOI: 10.2174/0929867326666190913194602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Giovanni Luca Beretta
- Department of Applied Research and Technological Development Molecular Pharmacology Unit Fondazione IRCCS Istituto Nazionale dei Tumori Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
18
|
Kong M, Huang Y, Yu R, Xi J. Coordination bonding-based Fe3O4@PDA-Zn2+-doxorubicin nanoparticles for tumor chemo-photothermal therapy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Chedid G, Yassin A. Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E916. [PMID: 30405018 PMCID: PMC6265694 DOI: 10.3390/nano8110916] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
Materials science has seen a great deal of advancement and development. The discovery of new types of materials sparked the study of their properties followed by applications ranging from separation, catalysis, optoelectronics, sensing, drug delivery and biomedicine, and many other uses in different fields of science. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) are a relatively new type of materials with high surface areas and permanent porosity that show great promise for such applications. The current study aims at presenting the recent work achieved in COFs and MOFs for biomedical applications, and to examine some challenges and future directions which the field may take. The paper herein surveys their synthesis, and their use as Drug Delivery Systems (DDS), in non-drug delivery therapeutics and for biosensing and diagnostics.
Collapse
Affiliation(s)
- Georges Chedid
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| | - Ali Yassin
- School of Arts and Sciences, Lebanese American University LAU, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|