1
|
Wang Y, He Y, Qian X, Zheng X, Wang Y, Gong Q. Exploring Diversity of Conopeptides and Revealing Novel Conoinsulins from Conus betulinus by Proteomic Analyses. J Proteome Res 2025. [PMID: 40278005 DOI: 10.1021/acs.jproteome.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The venom of cone snails, a potent weapon for predation and defense, contains diverse bioactive peptides (known as conopeptides, or conotoxins) that target various ion channels and receptors, offering potential as pharmacological tools or therapeutics. While transcriptomic studies have expanded conopeptide databases, proteomic validation remains limited. Here, we integrated two high-resolution mass spectrometry platforms to explore conopeptide diversity in Conus betulinus. A total of 283 conopeptides were identified, with 268 classifiable into known gene superfamilies or homology classes, while 15 unclassified conopeptides represent novel superfamilies. There were 46 newly discovered sequences and five new cysteine frameworks. Notably, we report the first proteomic identification of two novel conoinsulins in C. betulinus, Con-ins Be1 and Con-ins Be2. Both of them were predicted to retain insulin's canonical A/B-chain architecture. Structure modeling using the AlphaFold2 multimer suggested that Con-ins Be1 has a four-disulfide-bond arrangement, differing from the three disulfide bonds found in vertebrate insulin. In contrast, Con-ins Be2 was predicted to have three disulfide bonds, consistent with the structure of the vertebrate insulin. In summary, our study not only expanded the conopeptide repository but also provided two novel conoinsulins that may serve as pharmacological tools for insulin system research and merit further investigation.
Collapse
Affiliation(s)
- Yan Wang
- College of Agroforestry and Medicine, The Open University of China, Haidian, Beijing 100039, China
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng, Beijing 100037, China
| | - Yanbin He
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou, Zhejiang 310030, China
| | - Xin Qian
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng, Beijing 100037, China
| | - Xiaoyan Zheng
- College of Agroforestry and Medicine, The Open University of China, Haidian, Beijing 100039, China
| | - Yaya Wang
- College of Agroforestry and Medicine, The Open University of China, Haidian, Beijing 100039, China
| | - Qiuhong Gong
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng, Beijing 100037, China
| |
Collapse
|
2
|
Prabha S, Choudhury A, Islam A, Thakur SC, Hassan MI. Understanding of Alzheimer's disease pathophysiology for therapeutic implications of natural products as neuroprotective agents. Ageing Res Rev 2025; 105:102680. [PMID: 39922232 DOI: 10.1016/j.arr.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, affecting more than 24.3 million people worldwide in 2024. Sporadic AD (SAD) is more common and occurs in the geriatric population, while familial AD (FAD) is rare and appears before the age of 65 years. Due to progressive cholinergic neuronal loss and modulation in the PKC/MAPK pathway, β-secretase gets upregulated, leading to Aβ aggregation, which further activates tau kinases that form neurofibrillary tangles (NFT). Simultaneously, antioxidant enzymes are also upregulated, increasing oxidative stress (OS) and reactive species by impairing mitochondrial function, leading to DNA damage and cell death. This review discusses the classifications and components of several natural products (NPs) that target these signaling pathways for AD treatment. NPs, including alkaloids, polyphenols, flavonoids, polysaccharides, steroids, fatty acids, tannins, and polypeptides derived from plants, microbes, marine animals, venoms, insects, and mushrooms, are explored in detail. A synergistic combination of plant metabolites, together with prebiotics and probiotics has been shown to decrease Aβ aggregates by increasing the production of bioactive compounds. Toxins derived from venomous organisms have demonstrated effectiveness in modulating signaling pathways and reducing OS. Marine metabolites have also shown neuroprotective and anti-inflammatory properties. The cholera toxin B subunit and an Aβ15 fragment have been combined to create a possible oral AD vaccine, that showed enhancement of cognitive function in mice. Insect tea is also a reliable source of antioxidants. A functional edible mushroom snack bar showed an increment in cognitive markers. Future directions and therapeutic approaches for the treatment of AD can be improved by focusing more on NPs derived from these sources.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
3
|
Mumtaz SM, Khan MA, Jamal A, Hattiwale SH, Parvez S. Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments. Life Sci 2024; 351:122777. [PMID: 38851419 DOI: 10.1016/j.lfs.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.
Collapse
Affiliation(s)
- Sayed Md Mumtaz
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Yang MH, Cai WZ, Tembrock LR, Zhang MM, Zhang MY, Zhao Y, Yang Z. Transcriptomic analyses reveals a diverse venom composition in Agelena limbata (Araneae: Agelenaidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101303. [PMID: 39096758 DOI: 10.1016/j.cbd.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Spider venom is a natural source of diverse biomolecules, but due to technical limitations, only a small fraction has been studied. With the advancement of omics technologies, research on spider venom has broadened, greatly promoting systematic studies of spider venom. Agelena limbata is a common spider found in vegetation, known for constructing funnel-shaped webs, and feeding on insects such as Diptera and Homoptera. However, due to its small size and the difficulty in obtaining venom, the composition of Agelena limbata venom has never been studied. In this study, a transcriptomics approach was used to analyze the toxin components in the venom of Agelena limbata, resulting in the identification of 28 novel toxin-like sequences and 24 peptidases. Based on sequence similarity and differences in cysteine motifs, the 28-novel toxin-like sequences were classified into 10 superfamilies. According to the results annotated in the database, the 24 peptidases were divided into six distinct families, with the serine protease family being the most common. A phylogenetic tree was constructed using the toxin-like sequences of Agelena limbata along with Psechrus triangulus and Hippasa lycosina. An analysis of the structural domains and motifs of Agelena limbata was also conducted. The results indicated that Agelena limbata is more distantly related to the other two species of funnel-web spiders, and that the toxin superfamily IX has a unique function compared to the other superfamilies. This study reveals the components of the Agelena limbata venom, deepening our understanding of it, and through bioinformatics analysis, has identified unique functions of the toxin superfamilies, providing a scientific basis for the development of bioactive drugs in the future.
Collapse
Affiliation(s)
- Meng-Hui Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Wen-Zheng Cai
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Meng-Meng Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Meng-Ying Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China.
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China.
| |
Collapse
|
5
|
Jia Q, Fu Z, Li Y, Kang Z, Wu Y, Ru Z, Peng Y, Huang Y, Luo Y, Li W, Hu Y, Sun X, Wang J, Deng Z, Wu C, Wang Y, Yang X. Hydrogel Loaded with Peptide-Containing Nanocomplexes: Symphonic Cooperation of Photothermal Antimicrobial Nanoparticles and Prohealing Peptides for the Treatment of Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13422-13438. [PMID: 38442213 DOI: 10.1021/acsami.3c16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Current treatment for chronic infectious wounds is limited due to severe drug resistance in certain bacteria. Therefore, the development of new composite hydrogels with nonantibiotic antibacterial and pro-wound repair is important. Here, we present a photothermal antibacterial composite hydrogel fabricated with a coating of Fe2+ cross-linked carboxymethyl chitosan (FeCMCS) following the incorporation of melanin nanoparticles (MNPs) and the CyRL-QN15 peptide. Various physical and photothermal properties of the hydrogel were characterized. Cell proliferation, migration, cycle, and free-radical scavenging activity were assessed, and the antimicrobial properties of the hydrogel were probed by photothermal therapy. The effects of the hydrogel were validated in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection with full-thickness injury. This effect was further confirmed by changes in cytokines associated with inflammation, re-epithelialization, and angiogenesis on the seventh day after wound formation. The MNPs demonstrated robust photothermal conversion capabilities. The composite hydrogel (MNPs/CyRL-QN15/FeCMCS) promoted keratinocyte and fibroblast proliferation and migration while exhibiting high antibacterial efficacy, effectively killing more than 95% of Gram-positive and Gram-negative bacteria. In vivo study using an MRSA-infected full-thickness injury model demonstrated good therapeutic efficacy of the hydrogel in promoting regeneration and remodeling of chronically infected wounds by alleviating inflammatory response and accelerating re-epithelialization and collagen deposition. The MNPs/CyRL-QN15/FeCMCS hydrogel showed excellent antibacterial and prohealing effects on infected wounds, indicating potential as a promising candidate for wound healing promotion.
Collapse
Affiliation(s)
- Qiuye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yubin Huang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yonglu Luo
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Wanghongyu Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yiran Hu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Xinwang Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| |
Collapse
|
6
|
Wang Y, Li Y, Ni D, Wei Z, Fu Z, Li C, Sun H, Wu Y, Li Y, Zhang Y, Liu N, Liu Y, Wang Z, Li J, Sun D, He L, Yang Y, Wang Y, Yang X. miR-186-5p targets TGFβR2 to inhibit RAW264.7 cell migration and proliferation during mouse skin wound healing. ENVIRONMENTAL TOXICOLOGY 2023; 38:2826-2835. [PMID: 37565786 DOI: 10.1002/tox.23914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Active peptides play a vital role in the development of new drugs and the identification and discovery of drug targets. As the first reported native peptide homodimer with pro-regenerative potency, OA-GP11d could potentially be used as a novel molecular probe to help elucidate the molecular mechanism of skin wound repair and provide new drug targets. METHODS Bioinformatics analysis and luciferase assay were adopted to determine microRNAs (miRNAs) and its target. The prohealing potency of the miRNA was determined by MTS and a Transwell experiment against mouse macrophages. Enzyme-linked immunosorbent assay, realtime polymerase chain reaction, and western blotting were performed to explore the molecular mechanisms. RESULTS In this study, OA-GP11d was shown to induce Mus musculus microRNA-186-5p (mmu-miR-186-5p) down-regulation. Results showed that miR-186-5p had a negative effect on macrophage migration and proliferation as well as a targeted and negative effect on TGF-β type II receptor (TGFβR2) expression and an inhibitory effect on activation of the downstream SMAD family member 2 (Smad2) and protein-p38 kinase signaling pathways. Importantly, delivery of a miR-186-5p mimic delayed skin wound healing in mice. CONCLUSION miR-186-5p regulated macrophage migration and proliferation to delay wound healing through the TGFβR2/Smad2/p38 molecular axes, thus providing a promising new pro-repair drug target.
Collapse
Affiliation(s)
- Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chao Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Zhuo Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
da Silva AG, Alves MDM, da Cunha AA, Caires GA, Kerkis I, Vigerelli H, Sciani JM. Echinometra lucunter molecules reduce Aβ42-induced neurotoxicity in SH-SY5Y neuron-like cells: effects on disaggregation and oxidative stress. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230031. [PMID: 38053575 PMCID: PMC10694836 DOI: 10.1590/1678-9199-jvatitd-2023-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Background Echinometra lucunter is a sea urchin commonly found on America's rocky shores. Its coelomic fluid contains molecules used for defense and biological processes, which may have therapeutic potential for the treatment of amyloid-based neurodegenerative diseases, such as Alzheimer's, that currently have few drug options available. Methods In this study, we incubated E. lucunter coelomic fluid (ELCF) and fractions obtained by solid phase extraction in SH-SY5Y neuron-like cells to evaluate their effect on cell viability caused by the oligomerized amyloid peptide 42 (Aβ42o). Moreover, the Aβ42o was quantified after the incubation with ELCF fractions in the presence or not of cells, to evaluate if samples could cause amyloid peptide disaggregation. Antioxidant activity was determined in ELCF fractions, and cells were evaluated to check the oxidative stress after incubation with samples. The most relevant fraction was analyzed by mass spectrometry for identification of molecules. Results ELCF and certain fractions could prevent and treat the reduction of cell viability caused by Aβ42o in SH-SY5Y neuron-like cells. We found that one fraction (El50) reduced the oligomerized Aβ42 and the oxidative stress caused by the amyloid peptide through its antioxidant molecules, which in turn reduced cell death. Mass spectrometry analysis revealed that El50 comprises small molecules containing flavonoid antioxidants, such as phenylpyridazine and dihydroquercetin, and two peptides. Conclusion Our results suggest that sea urchin molecules may interact with Aβ42o and oxidative stress, preventing or treating neurotoxicity, which may be useful in treating dementia.
Collapse
Affiliation(s)
- Amanda Gomes da Silva
- Integrated Pharmacology and Gastroenterology Unit (UNIFAG), Bragança
Paulista, SP, Brazil
- Laboratory of Natural Products, Postgraduate Program in Health
Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| | | | | | | | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, São Paulo, SP,
Brazil
| | - Hugo Vigerelli
- Laboratory of Genetics, Butantan Institute, São Paulo, SP,
Brazil
- Center of Excellence in New Target Discovery, Butantan Institute,
São Paulo, SP, Brazil
| | - Juliana Mozer Sciani
- Laboratory of Natural Products, Postgraduate Program in Health
Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| |
Collapse
|
8
|
Sun D, Guo K, Liu N, Li Y, Li Y, Hu Y, Li S, Fu Z, Wang Y, Wu Y, Zhang Y, Li J, Li C, Wang Z, Kang Z, Sun J, Wang Y, Yang X. Peptide RL-QN15 promotes wound healing of diabetic foot ulcers through p38 mitogen-activated protein kinase and smad3/miR-4482-3p/vascular endothelial growth factor B axis. BURNS & TRAUMA 2023; 11:tkad035. [PMID: 38026443 PMCID: PMC10654477 DOI: 10.1093/burnst/tkad035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/31/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023]
Abstract
Background Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Kun Guo
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yuansheng Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhuo Wang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jun Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan MinZu University, No. 2929 Yuehua Street, Chenggong District, Kunming, 650504, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| |
Collapse
|
9
|
Wang J, Li Y, Feng C, Wang H, Li J, Liu N, Fu Z, Wang Y, Wu Y, Liu Y, Zhang Y, Yin S, He L, Wang Y, Yang X. Peptide OA-VI12 restrains melanogenesis in B16 cells and C57B/6 mouse ear skin via the miR-122-5p/Mitf/Tyr axis. Amino Acids 2023; 55:1687-1699. [PMID: 37794194 DOI: 10.1007/s00726-023-03341-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 μM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.
Collapse
Affiliation(s)
- Junsong Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Haoyu Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
10
|
Zschaber Anacleto P, Joviano-Santos JV. Editorial: The legacy of Dr. Candance Pert: recent advances in the neuropeptides and neuroreceptors research. Front Mol Neurosci 2023; 16:1295240. [PMID: 37854947 PMCID: PMC10579933 DOI: 10.3389/fnmol.2023.1295240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- Patrícia Zschaber Anacleto
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V. Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Yao A, Ma Y, Sun R, Zou W, Chen X, Zhou M, Ma C, Chen T, Shaw C, Wang L. A Designed Analog of an Antimicrobial Peptide, Crabrolin, Exhibits Enhanced Anti-Proliferative and In Vivo Antimicrobial Activity. Int J Mol Sci 2023; 24:14472. [PMID: 37833918 PMCID: PMC10572522 DOI: 10.3390/ijms241914472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 μM), which was around thirty times stronger than the parent peptide (MIC = 128 μM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 μM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.
Collapse
Affiliation(s)
- Aifang Yao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Yingxue Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Ruize Sun
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
12
|
Yin S, Wang Y, Yang X. Amphibian-derived wound healing peptides: chemical molecular treasure trove for skin wound treatment. Front Pharmacol 2023; 14:1120228. [PMID: 37377928 PMCID: PMC10291078 DOI: 10.3389/fphar.2023.1120228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Amphibian-derived wound healing peptides thus offer new intervention measures and strategies for skin wound tissue regeneration. As novel drug lead molecules, wound healing peptides can help analyze new mechanisms and discover new drug targets. Previous studies have identified various novel wound healing peptides and analyzed novel mechanisms in wound healing, especially competing endogenous RNAs (ceRNAs) (e.g., inhibition of miR-663a promotes skin repair). In this paper, we review amphibian-derived wound healing peptides, including the acquisition, identification, and activity of peptides, a combination of peptides with other materials, and the analysis of underlying mechanisms, to better understand the characteristics of wound healing peptides and to provide a molecular template for the development of new wound repair drugs.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, China
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Li Y, Jin T, Liu N, Wang J, Qin Z, Yin S, Zhang Y, Fu Z, Wu Y, Wang Y, Liu Y, Yang M, Pang A, Sun J, Wang Y, Yang X. A short peptide exerts neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. J Neuroinflammation 2023; 20:53. [PMID: 36855153 PMCID: PMC9972639 DOI: 10.1186/s12974-023-02739-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase β (IKKβ). IKKβ reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.
Collapse
Affiliation(s)
- Yilin Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Tao Jin
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, 650032 Yunnan China
| | - Naixin Liu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Junsong Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zihan Qin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Saige Yin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yingxuan Zhang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zhe Fu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yutong Wu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yinglei Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yixiang Liu
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Meifeng Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650031, Yunnan, China.
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
14
|
Su D, Gong Y, Li S, Yang J, Nian Y. Cyclovirobuxine D, a cardiovascular drug from traditional Chinese medicine, alleviates inflammatory and neuropathic pain mainly via inhibition of voltage-gated Ca v3.2 channels. Front Pharmacol 2022; 13:1081697. [PMID: 36618940 PMCID: PMC9811679 DOI: 10.3389/fphar.2022.1081697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclovirobuxine D (CVB-D), the main active constituent of traditional Chinese medicine Buxus microphylla, was developed as a safe and effective cardiovascular drug in China. B. microphylla has also been used to relieve various pain symptoms for centuries. In this study, we examined and uncovered strong and persistent analgesic effects of cyclovirobuxine D against several mouse models of pain, including carrageenan- and CFA-induced inflammatory pain and paclitaxel-mediated neuropathic hypersensitivity. Cyclovirobuxine D shows comparable analgesic effects by intraplantar or intraperitoneal administration. Cyclovirobuxine D potently inhibits voltage-gated Cav2.2 and Cav3.2 channels but has negligible effects on a diverse group of nociceptive ion channels distributed in primary afferent neurons, including Nav1.7, Nav1.8, TRPV1, TPRA1, TRPM8, ASIC3, P2X2 and P2X4. Moreover, inhibition of Cav3.2, rather than Cav2.2, plays a dominant role in attenuating the excitability of isolated dorsal root ganglion neurons and pain relieving effects of cyclovirobuxine D. Our work reveals that a currently in-use cardiovascular drug has strong analgesic effects mainly via blockade of Cav3.2 and provides a compelling rationale and foundation for conducting clinical studies to repurpose cyclovirobuxine D in pain management.
Collapse
Affiliation(s)
- Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Songyu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
15
|
Yin S, Pang A, Liu C, Li Y, Liu N, Li S, Li C, Sun H, Fu Z, Wang Y, Zhang Y, Yang M, Sun J, Wang Y, Yang X. Peptide OM-LV20 protects astrocytes against oxidative stress via the 'PAC1R/JNK/TPH1' axis. J Biol Chem 2022; 298:102429. [PMID: 36037970 PMCID: PMC9513268 DOI: 10.1016/j.jbc.2022.102429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke can lead to severe nerve injury and debilitation, resulting in considerable social and economic burdens. Due to the high complexity of post-injury repair mechanisms, drugs approved for use in stroke are extremely scarce, and thus, the discovery of new antistroke drugs and targets is critical. Tryptophan hydroxylase 1 (TPH1) is involved in a variety of mental and neurobehavioral processes, but its effects on stroke have not yet been reported. Here, we used primary astrocyte culture, quantitative real-time PCR, double immunofluorescence assay, lentiviral infection, cell viability analysis, Western blotting, and other biochemical experiments to explore the protective mechanism of peptide OM-LV20, which previously exhibited neuroprotective effects in rats after ischemic stroke via a mechanism that may involve TPH1. First, we showed that TPH1 was expressed in rat astrocytes. Next, we determined that OM-LV20 impacted expression changes of TPH1 in CTX-TNA2 cells and exhibited a protective effect on the decrease in cell viability and catalase (CAT) levels induced by hydrogen peroxide. Importantly, we also found that TPH1 expression induced by OM-LV20 may be related to the level of change in the pituitary adenylate cyclase-activating peptide type 1 receptor (PAC1R) and to the JNK signaling pathways, thereby exerting a protective effect on astrocytes against oxidative stress. The protective effects of OM-LV20 likely occur via the ‘PAC1R/JNK/TPH1’ axis, thus highlighting TPH1 as a novel antistroke drug target.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Chengxing Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shanshan Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huilin Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
16
|
Liu N, Li Y, Yang Y, Shu L, Liu Y, Wu Y, Sun D, Kang Z, Zhang Y, Ni D, Wei Z, Li S, Yang M, Wang Y, Sun J, Yang X. OL-FS13 alleviates experimental cerebral ischemia-reperfusion injury. Exp Neurol 2022; 357:114180. [PMID: 35901974 DOI: 10.1016/j.expneurol.2022.114180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) is the main cause of neurological injury after stroke. However, existing treatments for I/R injury are relatively poor, and relevant drugs need to be further explored. Amphibians have received increasing attention as a resource bank of bioactive peptides. However, reports on neuroprotective peptides from amphibians remain extremely rare. Here, we identified a new neuroprotective peptide (OL-FS13, amino acid sequence: FSLLLTWWRRRVC) from the odorous frog species Odorrana livida using a constructed cDNA library. OL-FS13 significantly improving infarct volume, behavioral and histological abnormalities in rats, and also showed neuroprotective activities in PC12 cell (by oxygen glucose deprivation/reoxygenation, OGD/R). Mechanistically, OL-FS13 increased the level of antioxidative enzymes to resist oxidative stress and alleviated endoplasmic reticulum (ER) stress induced by I/R and OGD/R. The use of ML385 (Nrf2 inhibitor) indicated that OL-FS13 relieved nerve damage caused by oxidative and ER stress by increasing the nuclear displacement of Nrf2. Collectively, this research provides a novel drug candidate for the clinical cerebral I/R curation.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinology Department of affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
17
|
de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior CDSDS. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications. Front Cell Infect Microbiol 2022; 12:838259. [PMID: 35402305 PMCID: PMC8992797 DOI: 10.3389/fcimb.2022.838259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Peptides comprise a versatile class of biomolecules that present a unique chemical space with diverse physicochemical and structural properties. Some classes of peptides are able to naturally cross the biological membranes, such as cell membrane and blood-brain barrier (BBB). Cell-penetrating peptides (CPPs) and blood-brain barrier-penetrating peptides (B3PPs) have been explored by the biotechnological and pharmaceutical industries to develop new therapeutic molecules and carrier systems. The computational prediction of peptides’ penetration into biological membranes has been emerged as an interesting strategy due to their high throughput and low-cost screening of large chemical libraries. Structure- and sequence-based information of peptides, as well as atomistic biophysical models, have been explored in computer-assisted discovery strategies to classify and identify new structures with pharmacokinetic properties related to the translocation through biomembranes. Computational strategies to predict the permeability into biomembranes include cheminformatic filters, molecular dynamics simulations, artificial intelligence algorithms, and statistical models, and the choice of the most adequate method depends on the purposes of the computational investigation. Here, we exhibit and discuss some principles and applications of these computational methods widely used to predict the permeability of peptides into biomembranes, exhibiting some of their pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Ewerton Cristhian Lima de Oliveira
- Institute of Technology, Federal University of Pará, Belém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Kauê Santana da Costa
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Paulo Sérgio Taube
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
18
|
Gorai B, Vashisth H. Structures and interactions of insulin-like peptides from cone snail venom. Proteins 2022; 90:680-690. [PMID: 34661928 PMCID: PMC8816879 DOI: 10.1002/prot.26265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
The venomous insulin-like peptides released by certain cone snails stimulate hypoglycemic shock to immobilize fish and catch the prey. Compared to human insulin (hIns), the cone snail insulins (Con-Ins) are typically monomeric and shorter in sequence, yet they exhibit moderate hIns-like biological activity. We have modeled six variants of Con-Ins (G3, K1, K2, T1A, T1B, and T2) and carried out explicit-solvent molecular dynamics (MD) simulations of eight types of insulins, two with known structures (hIns and Con-Ins-G1) and six Con-Ins with modeled structures, to characterize key residues of each insulin that interact with the truncated human insulin receptor (μIR). We show that each insulin/μIR complex is stable during explicit-solvent MD simulations and hIns interactions indicate the highest affinity for the "site 1" of IR. The residue contact maps reveal that each insulin preferably interacts with the αCT peptide than the L1 domain of IR. Through analysis of the average nonbonded interaction energy contribution of every residue of each insulin for the μIR, we probe the residues establishing favorable interactions with the receptor. We compared the interaction energy of each residue of every Con-Ins to the μIR and observed that γ-carboxylated glutamate (Gla), His, Thr, Tyr, Tyr/His, and Asn in Con-Ins are favorable substitutions for GluA4, AsnA21, ValB12, LeuB15, GlyB20, and ArgB22 in hIns, respectively. The identified insulin analogs, although lacking the last eight residues of the B-chain of hIns, bind strongly to μIR. Our findings are potentially useful in designing potent fast-acting therapeutic insulin.
Collapse
Affiliation(s)
- Biswajit Gorai
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
19
|
Soares-Silva B, Beserra-Filho JIA, Morera PMA, Custódio-Silva AC, Maria-Macêdo A, Silva-Martins S, Alexandre-Silva V, Silva SP, Silva RH, Ribeiro AM. The bee venom active compound melittin protects against bicuculline-induced seizures and hippocampal astrocyte activation in rats. Neuropeptides 2022; 91:102209. [PMID: 34808488 DOI: 10.1016/j.npep.2021.102209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Epilepsy is a chronic neuropathology characterized by an abnormal hyperactivity of neurons that generate recurrent, spontaneous, paradoxical and synchronized nerve impulses, leading or not to seizures. This neurological disorder affects around 70 million individuals worldwide. Pharmacoresistance is observed in about 30% of the patients and long-term use of antiepileptics may induce serious side effects. Thus, there is an interest in the study of the therapeutic potential of bioactive substances isolated from natural products in the treatment of epilepsy. Arthropod venoms contain neurotoxins that have high affinity for molecular structures in the neural tissue such as receptors, transporters and ion channels both in glial and neuronal membranes. This study evaluated the potential neuroprotective effect of melittin (MEL), an active compound of bee venom, in the bicuculline-induced seizure model (BIC) in rats. Male Wistar rats (3 months, 250-300 g) were submitted to surgery for the implantation of a unilateral cannula in the lateral ventricle. After the recovery period, rats received a microinjection of saline solution or MEL (0.1 mg per animal). Firstly, rats were evaluated in the open field (20 min) and in the elevated plus maze (5 min) tests after received microinjection of saline or MEL. After, 30 min later animals received BIC (100 mg/ml) or saline, and their behaviors were analyzed for 20 min in the open field according to a seizure scale. At the end, rats were euthanized, brains collected and processed to glial fibrillary acidic protein (GFAP) immunohistochemistry evaluation. No changes were observed in MEL-treated rats in the open field and elevated plus maze. However, 90% of MEL-treated animals were protected against seizures induced by BIC. There was an increase in the latency for the onset of seizures, accompanied by a reduction of GFAP-immunoreactivity cells in the dentate gyrus and CA1. Thus, our study suggests that MEL has an anticonvulsant potential, and further studies are needed to elucidate the mechanisms involved in this action.
Collapse
Affiliation(s)
| | - José Ivo Araújo Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
20
|
The beneficial roles of poisonous skin secretions in survival strategies of the odorous frog Odorrana andersonii. Naturwissenschaften 2021; 109:4. [PMID: 34874458 DOI: 10.1007/s00114-021-01776-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The evolution of predatory, anti-predatory, and defensive strategies regarding environmental adaptation in animals is of significant research interest. In particular, amphibians, who represent a transition between aquatic and terrestrial vertebrates, play an important role in animal evolution. The bioactive skin secretions of amphibians are of specific interest due to their involvement in the crucial physiological functions of amphibian skin. We previously isolated and identified several bioactive peptides, including those showing antioxidant, antimicrobial, and wound-healing properties, from the skin secretions of the odorous frog species Odorrana andersonii. Currently, however, the biological significance of skin secretions in O. andersonii survival remains unclear. Here, we studied the biological significance of skin glands and secretions in regard to environmental adaptations of O. andersonii. Our research found that O. andersonii may secrete and excrete bioactive secretions through many glands (peptides and proteins as the main components in glands) distributed in the skin. The skin secretions not only displayed toxicity but also showed antioxidant, antibacterial, and repair promoting activities, suggesting that they play a protective role in O. andersonii when facing environmental threats. These bioactive skin secretions appear to act as a chemical survival strategy in O. andersonii, allowing the species to gain advantages in survival behavior.
Collapse
|
21
|
Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, Hu Y, Sun H, Fu Z, Wang Y, Li X, Tang J, Wang Y, Deng Z, Yang X. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. J Nanobiotechnology 2021; 19:309. [PMID: 34627291 PMCID: PMC8501717 DOI: 10.1186/s12951-021-01051-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. METHODS In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. RESULTS Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. CONCLUSIONS Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy.
Collapse
Affiliation(s)
- Pan Qin
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yi Meng
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Second People's Hospital of Yunnan Province and Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650021, China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Hu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huiling Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
22
|
Sun H, Wang Y, He T, He D, Hu Y, Fu Z, Wang Y, Sun D, Wang J, Liu Y, Shu L, He L, Deng Z, Yang X. Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds. J Nanobiotechnology 2021; 19:304. [PMID: 34600530 PMCID: PMC8487533 DOI: 10.1186/s12951-021-01049-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing.
Collapse
Affiliation(s)
- Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Tiantian He
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dingwei He
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Junsong Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
23
|
Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines 2021; 9:biomedicines9070819. [PMID: 34356883 PMCID: PMC8301361 DOI: 10.3390/biomedicines9070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.
Collapse
Affiliation(s)
- Nicolai Rügen
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
- BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
24
|
Lopez SMM, Aguilar JS, Fernandez JBB, Lao AGJ, Estrella MRR, Devanadera MKP, Ramones CMV, Villaraza AJL, Guevarra LA, Santiago-Bautista MR, Santiago LA. Neuroactive venom compounds obtained from Phlogiellus bundokalbo as potential leads for neurodegenerative diseases: insights on their acetylcholinesterase and beta-secretase inhibitory activities in vitro. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210009. [PMID: 34249120 PMCID: PMC8237997 DOI: 10.1590/1678-9199-jvatitd-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Background Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.
Collapse
Affiliation(s)
- Simon Miguel M Lopez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Jeremey S Aguilar
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Jerene Bashia B Fernandez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Angelic Gayle J Lao
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015.,Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Mitzi Rain R Estrella
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008
| | - Mark Kevin P Devanadera
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| | - Cydee Marie V Ramones
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Aaron Joseph L Villaraza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines, 1101
| | - Leonardo A Guevarra
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015
| | - Myla R Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| | - Librado A Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines, 1008.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines, 1015.,The Graduate School, University of Santo Tomas, Manila, Philippines, 1015
| |
Collapse
|
25
|
Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar Parasa lepida (Cramer, 1799): Insights into the Evolution of Lepidoptera Toxins. INSECTS 2021; 12:insects12050396. [PMID: 33946702 PMCID: PMC8145965 DOI: 10.3390/insects12050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Many caterpillar species can produce toxins that cause harmful reactions to humans, varying from mild irritation to death. Currently, there is very limited knowledge about caterpillar toxin diversity, because only a few species have been investigated. We used the transcriptome technique to identify candidate toxin genes from the nettle caterpillar Parasa lepida (Cramer, 1799). It is a common pest of oil palm, coconut, and mango in South and South-East Asia, which can cause severe pain and allergic responses to those in contact with them. We reported 168 candidate toxin genes. Most of them are members of the toxin genes families commonly recruited in animal venoms such as serine protease and serine protease inhibitors. However, we identified 21 novel genes encoding knottin-like peptides expressed at a high level in the transcriptome. Their predicted 3D structures are similar to neurotoxins in scorpion and tarantula. Our study suggests that P. lepida venom contains diverse toxin proteins that potentially cause allergic reactions and pain. This study sheds light on the hidden diversity of toxin proteins in caterpillar lineage, which could be future fruitful new drug sources. Abstract Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs.
Collapse
|
26
|
Yin S, Yang M, Li Y, Li S, Fu Z, Liu N, Wang Y, Hu Y, Xie C, Shu L, Pang A, Gu Y, Wang Y, Sun J, Yang X. Peptide OM-LV20 exerts neuroprotective effects against cerebral ischemia/reperfusion injury in rats. Biochem Biophys Res Commun 2021; 537:36-42. [PMID: 33383562 DOI: 10.1016/j.bbrc.2020.12.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion (I/R) is a common injury leading to ischemic stroke. At present, I/R treatment remains limited, highlighting the urgent need for the discovery and development of new protective drugs for brain injury. Here, we investigated the neuroprotective effects of short peptide OM-LV20 previously identified from amphibian against I/R rats. Results showed that intraperitoneal administration of OM-LV20 (20 ng/kg) significantly reduced infarct area formation, improved behavioral abnormalities, and protected cortical and hippocampal neurons against death caused by I/R. Moreover, the underlying molecular mechanism was involved with the regulation of the MAPK and BDNF/AKT signaling pathways, as well as the levels of cyclic adenosine monophosphate, pituitary adenylate cyclase-activating polypeptide receptor, and tryptophan hydroxylase 1. To the best of our knowledge, this research was the first report to describe the neuroprotective effects of an amphibian skin secretion-derived peptide in I/R rats and highlighted OM-LV20 as a promising drug candidate for the development of novel anti-stroke therapies.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shanshan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Hu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chun Xie
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650500, China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Yuanqi Gu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650500, China.
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
27
|
Gazerani P. Venoms as an adjunctive therapy for Parkinson's disease: where are we now and where are we going? Future Sci OA 2020; 7:FSO642. [PMID: 33437512 PMCID: PMC7787152 DOI: 10.2144/fsoa-2020-0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Parkinson's disease (PD), are increasing in the aging population. Crucially, neurodegeneration of dopaminergic neurons in PD is associated with chronic inflammation and glial activation. Besides this, bradykinesia, resting tremor, rigidity, sensory alteration, and cognitive and psychiatric impairments are also present in PD. Currently, no pharmacologically effective treatment alters the progression of the disease. Discovery and development of new treatment strategies remains a focus for ongoing investigations. For example, one approach is cell therapy to prevent dopaminergic neuronal loss or to slow PD progression. The neuroprotective role of a diverse range of natural products, including venoms from bees, scorpions, snakes and lizards, are also being tested in preclinical PD models and in humans. The main findings from recent studies that have investigated venoms as therapeutic options for PD are summarized in this special report.
Collapse
Affiliation(s)
- Parisa Gazerani
- Laboratory of Molecular Pharmacology, Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
28
|
Tao J, Yin S, Song Y, Zeng L, Li S, Liu N, Sun H, Fu Z, Wang Y, Li Y, Liu Y, Sun J, Wang Y, Yang X. Novel scorpion venom peptide HsTx2 ameliorates cerebral ischemic brain injury in rats via the MAPK signaling pathway. Biochem Biophys Res Commun 2020; 534:442-449. [PMID: 33248693 DOI: 10.1016/j.bbrc.2020.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a severe threat to human health due to its high recurrence, mortality, and disability rates. As such, how to prevent and treat ischemic stroke effectively has become a research hotspot in recent years. Here, we identified a novel peptide, named HsTx2 (AGKKERAGSRRTKIVMLKCIREHGH, 2 861.855 Da), derived from the scorpion Heterometrus spinifer, which showed obvious anti-apoplectic effects in rats with ischemic stroke. Results further demonstrated that HsTx2 significantly reduced formation of infarct area and improved behavioral abnormalities in ischemic stroke rats. These protective effects were likely exerted via activation of the mitogen-activated protein kinase (MAPK) signaling pathway, i.e., up-regulation of phosphorylated ERK1/2 in both rat cerebral cortex and activated microglia (AM); up-regulation of phosphorylated p38 (p-p38) in the cerebral cortex; and inhibition of phosphorylated JNK and p-p38 levels in the AM. In conclusion, this study highlights HsTx2 as a potential neuroprotective agent for stroke.
Collapse
Affiliation(s)
- Jian Tao
- Department of Pharmacology, Medical School, Kunming University, Kunming, 650214, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yongli Song
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
29
|
Wang Y, Feng Z, Yang M, Zeng L, Qi B, Yin S, Li B, Li Y, Fu Z, Shu L, Fu C, Qin P, Meng Y, Li X, Yang Y, Tang J, Yang X. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res 2020; 163:105296. [PMID: 33220421 DOI: 10.1016/j.phrs.2020.105296] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Despite extensive efforts to develop efficacious therapeutic approaches, the treatment of skin wounds remains a considerable clinical challenge. Existing remedies cannot sufficiently meet current needs, so the discovery of novel pro-healing agents is of growing importance. In the current research, we identified a novel short peptide (named RL-QN15, primary sequence 'QNSYADLWCQFHYMC') from Rana limnocharis skin secretions, which accelerated wound healing in mice. Exploration of the underlying mechanisms showed that RL-QN15 activated the MAPK and Smad signaling pathways, and selectively modulated the secretion of cytokines from macrophages. This resulted in the proliferation and migration of skin cells and dynamic regulation of TGF-β1 and TGF-β3 in wounds, which accelerated re-epithelialization and granulation tissue formation and thus skin regeneration. Moreover, RL-QN15 showed significant therapeutic potency against chronic wounds, skin fibrosis, and oral ulcers. Our results highlight frog skin secretions as a potential treasure trove of bioactive peptides with healing activity. The novel peptide (RL-QN15) identified in this research shows considerable capacity as a candidate for the development of novel pro-healing agents.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Zhuo Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bu'er Qi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Bangsheng Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Chen Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Pan Qin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yi Meng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Second People's Hospital of Yunnan Province & Fourth Affiliated Hospital of Kunming Medical University, Kunming, 650021, Yunnan, 650223, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
30
|
Mourão CBF, Brand GD, Fernandes JPC, Prates MV, Bloch C, Barbosa JARG, Freitas SM, Restano-Cassulini R, Possani LD, Schwartz EF. Head-to-Tail Cyclization after Interaction with Trypsin: A Scorpion Venom Peptide that Resembles Plant Cyclotides. J Med Chem 2020; 63:9500-9511. [PMID: 32787139 DOI: 10.1021/acs.jmedchem.0c00686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidase inhibitors (PIs) have been broadly studied due to their wide therapeutic potential for human diseases. A potent trypsin inhibitor from Tityus obscurus scorpion venom was characterized and named ToPI1, with 33 amino acid residues and three disulfide bonds. The X-ray structure of the ToPI1:trypsin complex, in association with the mass spectrometry data, indicate a sequential set of events: the complex formation with the inhibitor Lys32 in the trypsin S1 pocket, the inhibitor C-terminal residue Ser33 cleavage, and the cyclization of ToPI1 via a peptide bond between residues Ile1 and Lys32. Kinetic and thermodynamic characterization of the complex was obtained. ToPI1 shares no sequence similarity with other PIs characterized to date and is the first PI with CS-α/β motif described from animal venoms. In its cyclic form, it shares structural similarities with plant cyclotides that also inhibit trypsin. These results bring new insights for studies with venom compounds, PIs, and drug design.
Collapse
Affiliation(s)
- Caroline B F Mourão
- Neuropharma Lab, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brası́lia, Brasília-DF 70910-900, Brazil.,Instituto Federal de Brası́lia, Campus Ceilándia, Brası́lia-DF 72220-260, Brazil
| | - Guilherme D Brand
- Laboratório de Sı́ntese e Análise de Biomoléculas, LSAB, Instituto de Quı́mica, Universidade de Brası́lia, Brası́lia-DF 70910-900, Brazil
| | - João Paulo C Fernandes
- Laboratório de Biofı́sica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brası́lia, Brası́lia-DF 70910-900, Brazil
| | - Maura V Prates
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brası́lia-DF 70770-917, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brası́lia-DF 70770-917, Brazil
| | - João Alexandre R G Barbosa
- Laboratório de Biofı́sica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brası́lia, Brası́lia-DF 70910-900, Brazil
| | - Sônia M Freitas
- Laboratório de Biofı́sica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brası́lia, Brası́lia-DF 70910-900, Brazil
| | - Rita Restano-Cassulini
- Instituto de Biotecnologı́a, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Lourival D Possani
- Instituto de Biotecnologı́a, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Elisabeth F Schwartz
- Neuropharma Lab, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brası́lia, Brasília-DF 70910-900, Brazil
| |
Collapse
|
31
|
Antioxidant Peptide AOP-P1 Derived from Odorous Frog Showed Protective Effects Against UVB-Induced Skin Damages. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|