1
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2025; 480:2201-2222. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
2
|
Hong LQ, Ho TNT, Cu ST, Ngan LT, Tran NQ, Dang TT. Effective Strategies in Designing Chitosan-hyaluronic Acid Nanocarriers: From Synthesis to Drug Delivery Towards Chemotherapy. Curr Drug Deliv 2025; 22:41-62. [PMID: 38310441 DOI: 10.2174/0115672018275983231207101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 02/05/2024]
Abstract
The biomedical field faces an ongoing challenge in developing more effective anti-cancer medication due to the significant burden that cancer poses on human health. Extensive research has been conducted on the utilization of natural polysaccharides in nanomedicine owing to their properties of biocompatibility, biodegradability, non-immunogenicity, and non-toxicity. These characteristics make them a potent drug delivery system for cancer therapy. The chitosan hyaluronic acid nanoparticle (CSHANp) system, consisting of chitosan and hyaluronic acid nanoparticles, has exhibited considerable potential as a nanocarrier for various cancer drugs, rendering it one of the most auspicious systems presently accessible. The CSHANps demonstrate remarkable drug loading capacity, precise control over drug release, and exceptional selectivity towards cancer cells. These properties enhance the therapeutic effectiveness against cancerous cells. This article aims to provide a comprehensive analysis of CSHANp, focusing on its characteristics, production techniques, applications, and future prospects.
Collapse
Affiliation(s)
- Long-Quy Hong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Son T Cu
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Lien Tuyet Ngan
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Moghaddam FD, Zare EN, Hassanpour M, Bertani FR, Serajian A, Ziaei SF, Paiva-Santos AC, Neisiany RE, Makvandi P, Iravani S, Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr Polym 2024; 330:121839. [PMID: 38368115 DOI: 10.1016/j.carbpol.2024.121839] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | | | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Azam Serajian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Seyedeh Farnaz Ziaei
- Department of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| | - Pooyan Makvandi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
4
|
Wu J, Chen Q, Wang W, Lin Y, Kang H, Jin Z, Zhao K. Chitosan Derivative-Based Microspheres Loaded with Fibroblast Growth Factor for the Treatment of Diabetes. Polymers (Basel) 2023; 15:3099. [PMID: 37514488 PMCID: PMC10386009 DOI: 10.3390/polym15143099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus type 2 (T2DM) is a disease caused by genetic and environmental factors, and the main clinical manifestation is hyperglycemia. Currently, insulin injections are still the first-line treatment for diabetes. However, repeated injections may cause insulin resistance, hypoglycemia, and other serious side effects. Thus, it is imperative to develop new diabetes treatments. Protein-based diabetes drugs, such as fibroblast growth factor-21 (FGF-21), have a longer-lasting glycemic modulating effect with high biosafety. However, the instability of these protein drugs limits their applications. In this study, we extract protein hypoglycemic drugs with oral and injectable functions. The FGF-21 analog (NA-FGF) was loaded into the chitosan derivative-based nanomaterials, N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan (N-2-HACC/CMCS), to prepare NA-FGF-loaded N-2-HACC/CMCS microspheres (NA-FGF-N-2-HACC/CMCS MPs). It was well demonstrated that NA-FGF-N-2-HACC/CMCS MPs have great biocompatibility, biostability, and durable drug-release ability. In addition to injectable drug delivery, our prepared microspheres were highly advantageous for oral administration. The in vitro and in vivo experimental results suggested that NA-FGF-N-2-HACC/CMCS MPs could be used as a promising candidate and universal nano-delivery system for both oral and injectable hypoglycemic regulation.
Collapse
Affiliation(s)
- Jue Wu
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Qian Chen
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Wenfei Wang
- Bio-Pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuhong Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Hong Kang
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Kai Zhao
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| |
Collapse
|
5
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Yu Y, Xie C, Wu Y, Liu P, Wan Y, Sun X, Wang L, Zhang Y. Preparation of a PVA/Chitosan/Glass Fiber Composite Membrane and the Performance in CO 2 Separation. MEMBRANES 2022; 13:36. [PMID: 36676843 PMCID: PMC9863650 DOI: 10.3390/membranes13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/12/2023]
Abstract
In this study, a novel composite membrane was developed by casting the mixed aqueous solution of chitosan (CS) and polyvinyl alcohol (PVA) on a glass fiber microporous membrane. The polymeric coating of a composite membrane containing amino groups and hydroxyl groups has a favorable CO2 affinity and provides an enhanced CO2 transport mechanism, thereby improving the permeance and selectivity of CO2. A series of tests for the composite membranes were taken to characterize the chemical structure, morphology, strength, and gas separation properties. ATR-FTIR spectra showed that the chemical structure and functional group of the polymer coating had no obvious change after the heat treatment under 180 °C, while SEM results showed that the composite membranes had a dense surface. The gas permeance and selectivity of the composite membrane were tested using single gases. The results showed that the addition of chitosan can increase the CO2 permeance which could reach 233 GPU. After a wetting treatment, the CO2 permeance (454 GPU) and gas selectivity (17.71) were higher than that of dry membranes because moisture promotes the composite membrane transmission. After a heat treatment, the permeance of N2 decreased more significantly than that of CO2, which led to an increase in CO2/N2 selectivity (10.0).
Collapse
Affiliation(s)
- Yunwu Yu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Chunyang Xie
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yan Wu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Peng Liu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Ye Wan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Xiaowei Sun
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Lihua Wang
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yinan Zhang
- Research Center for Nanotechnology, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
7
|
Stability and antioxidant activity of chitosan/β-Lactoglobulin on anthocyanins from Aronia melanocarpa. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Ding J, Guo Y. Recent Advances in Chitosan and its Derivatives in Cancer Treatment. Front Pharmacol 2022; 13:888740. [PMID: 35694245 PMCID: PMC9178414 DOI: 10.3389/fphar.2022.888740] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer has become a main public health issue globally. The conventional treatment measures for cancer include surgery, radiotherapy and chemotherapy. Among the various available treatment measures, chemotherapy is still one of the most important treatments for most cancer patients. However, chemotherapy for most cancers still faces many problems associated with a lot of adverse effects, which limit its therapeutic potency, low survival quality and discount cancer prognosis. In order to decrease these side effects and improve treatment effectiveness and patient’s compliance, more targeted treatments are needed. Sustainable and controlled deliveries of drugs with controllable toxicities are expected to address these hurdles. Chitosan is the second most abundant natural polysaccharide, which has excellent biocompatibility and notable antitumor activity. Its biodegradability, biocompatibility, biodistribution, nontoxicity and immunogenicity free have made chitosan become a widely used polymer in the pharmacology, especially in oncotherapy. Here, we make a brief review of the main achievements in chitosan and its derivatives in pharmacology with a special focus on their agents delivery applications, immunomodulation, signal pathway modulation and antitumor activity to highlight their role in cancer treatment. Despite a large number of successful studies, the commercialization of chitosan copolymers is still a big challenge. The further development of polymerization technology may satisfy the unmet medical needs.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yonghong Guo,
| |
Collapse
|
9
|
Liu S, Huang X, Fu C, Dou Q, Li J, Feng X, Mo Y, Meng X, Zeng C, Wu A, Li C. Is It an Outbreak of Health Care-Associated Infection? An Investigation of Binocular Conjunctival Congestion After Laparoscopic Cholecystectomy Was Traced to Chitosan Derivatives. Front Med (Lausanne) 2022; 9:759945. [PMID: 35321463 PMCID: PMC8936390 DOI: 10.3389/fmed.2022.759945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background From May 6 to May 23, 2019, 24 (80.00%) patients who underwent laparoscopic cholecystectomy (LC) developed binocular conjunctival congestion within 4–8 h after their operation in the day ward of a teaching hospital. Methods Nosocomial infection prevention and control staff undertook procedural and environmental investigations, performed a case-control retrospective study (including 24 cases and 48 controls), and reviewed all lot numbers of biological material products to investigate the suspected outbreak of health care-associated infection. Findings Initially, an outbreak of health care-associated infection caused by bacteria was hypothesized. We first suspected the membranes that covered patients' eyes were cut using non-sterile scissors and thus contaminated, but they failed to yield bacteria. In addition, both corneal and conjunctival fluorescein staining results were negative in case-patients and isolated bacteria were ubiquitous in the environment or common skin commensals or normal flora of conjunctiva from 218 samples from day surgery and the day ward. Hence, we considered a non-infectious factor as the most likely cause of the binocular conjunctival congestion. Then, we found that case-patients were more likely than LC surgery patients without binocular conjunctival congestion to be exposed to biological materials in a retrospective case-control study. When we reviewed lot numbers, duration of use, and the number of patients who received four biological material products during LC in the day ward, we found that the BLK1821 lot of a modified chitosan medical membrance (the main ingredient is chitosan, a linear cationic polysaccharide) was used concurrently to when the case aggregation appeared. Finally, we surmised there was a correlation between this product and the outbreak of binocular conjunctival congestion. Relapse of the pseudo-outbreak has not been observed since stopping usage of the product for 6 months. Conclusion A cluster of binocular non-infectious conjunctival congestion diagnosed after LC proved to be a pseudo-outbreak. We should pay more attention to adverse events caused by biomaterials in hospitals.
Collapse
Affiliation(s)
- Sidi Liu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Chenchao Fu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Qingya Dou
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xuelian Feng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Operating Room Department, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Day Ward Unit, Xiangya Hospital of Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Cui Zeng
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Anhua Wu
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Chunhui Li
| |
Collapse
|
10
|
Zou Y, Zhong Y, Li H, Ding F, Shi X. Electrodeposition of Polysaccharide and Protein Hydrogels for Biomedical Applications. Curr Med Chem 2019; 27:2610-2630. [PMID: 31830879 DOI: 10.2174/0929867326666191212163955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/26/2019] [Accepted: 11/22/2019] [Indexed: 11/22/2022]
Abstract
In the last few decades, polysaccharide and protein hydrogels have attracted significant attentions and been applied in various engineering fields. Polysaccharide and protein hydrogels with appealing physical and biological features have been produced to meet different biomedical applications for their excellent properties related to biodegradability, biocompatibility, nontoxicity, and stimuli responsiveness. Numerous methods, such as chemical crosslinking, photo crosslinking, graft polymerization, hydrophobic interaction, polyelectrolyte complexation and electrodeposition have been employed to prepare polysaccharide and protein hydrogels. Electrodeposition is a facile way to produce different polysaccharide and protein hydrogels with the advantages of temporal and spatial controllability. This paper reviews the recent progress in the electrodeposition of different polysaccharide and protein hydrogels. The strategies of pH induced assembly, Ca2+ crosslinking, metal ions induced assembly, oxidation induced assembly derived from electrochemical methods were discussed. Pure, binary blend and ternary blend polysaccharide and protein hydrogels with multiple functionalities prepared by electrodeposition were summarized. In addition, we have reviewed the applications of these hydrogels in drug delivery, tissue engineering and wound dressing.
Collapse
Affiliation(s)
- Yang Zou
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yuye Zhong
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| |
Collapse
|