1
|
Yang X, Chen L, Wan G, Liu J, Zhao B, Zhu H, Zhang Y. Two new constituents from the endophyte of Alternaria alternata and its anti-neuroinflammatory activity guided by molecular docking. Nat Prod Res 2025; 39:2140-2150. [PMID: 38084022 DOI: 10.1080/14786419.2023.2291705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2025]
Abstract
Two new compounds, 3-hydroxy-1-(3-hydroxy-5-methoxyphenyl)-2-methyl propan-1-one (1) and 1,2,6-trihydroxy-8-methoxy-2,3,3a,9b-tetrahydrocyclopenta[c] isochromen-5(1H)-one (2), along with nine known compounds 3-11, involving pyranones, phenylpropenoids and alkaloids, were obtained from Alternaria alternata, an endophyte isolated from Hypericum perforatum L. The structures were elucidated by extensive spectroscopic analyses, including 1D NMR, 2D NMR, HRESIMS, IR, UV spectroscopy. The absolute configuration was established via spectroscopy techniques and X-ray crystallisation method. Furthermore, guided by molecular docking, compounds 1 and 3 exhibited promising anti-neuroinflammatory activity in LPS-induced BV-2 microglial cells, with IC50 values of 0.9 ± 0.3 μM and 3.0 ± 0.4 μM respectively. Moreover, they effectively attenuated the LPS-induced elevation of NO, TNF-α, IL-6, and IL-1β production in BV-2 microglial cells. These findings diversify the metabolite of A. alternata and highlight their potential as leading compounds against neuroinflammatory-related diseases.
Collapse
Affiliation(s)
- Xiliang Yang
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Long Chen
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Guoqing Wan
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Binjie Zhao
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Musa MS, Islam MT, Billah W, Hossain MS, Rahat MSS, Bayil I, Munni YA, Ganguli S. Structure-based virtual screening of Trachyspermum ammi metabolites targeting acetylcholinesterase for Alzheimer's disease treatment. PLoS One 2024; 19:e0311401. [PMID: 39689077 DOI: 10.1371/journal.pone.0311401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 12/19/2024] Open
Abstract
In recent decades, Alzheimer's disease (AD) has garnered significant attention due to its rapid global prevalence. The cholinergic hypothesis posits that the degradation of acetylcholine by acetylcholinesterase (AChE) contributes to AD development. Despite existing anti-AChE drugs, their adverse side effects necessitate new agents. This study analyzed 150 bioactive phytochemicals from Trachyspermum ammi using structure-based drug design and various in-silico tools to identify potent anti-AChE compounds. Compounds were screened for drug-likeness (QEDw ≥50%) and bioavailability (≥55%) and underwent toxicity profiling via the ProTox-II server. Selected compounds were prepared for molecular docking with the human AChE protein as the receptor. Viridifloral, 2-Methyl-3-glucosyloxy-5-isopropyl phenol, Alpha-Curcumene, and Sterol emerged as top candidates with high AChE affinity. These results were validated by molecular dynamics simulations, confirming stable interactions. The hit compounds were further evaluated for drug-likeness using Lipinski's rule and ADMET properties, confirming favorable pharmacokinetic profiles. DFT optimization analyzed frontier molecular orbitals and electrostatic potential, demonstrating favorable chemical reactivity and stability. This study suggests that these identified compounds could be novel nature-derived AChE inhibitors, potentially contributing to AD treatment. However, further in-vitro and in-vivo studies are necessary to confirm their efficacy in biological systems. Future research will focus on developing these compounds into safe and effective drugs to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Mohammed Sakib Musa
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Md Tahsinul Islam
- Department of Biochemistry and Biotechnology, North South University, Dhaka, Bangladesh
| | - Wasif Billah
- Department of Pharmacy, Faculty of Basic Medicine and Pharmaceutical Science, University of Science and Technology Chittagong, Chittagong, Bangladesh
| | - Md Siam Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju, Seoul, Republic of Korea
| | - Sumon Ganguli
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
3
|
Yin Q, Chen G, Mu D, Yang Y, Hao J, Lin B, Zhou D, Hou Y, Li N. Natural anti-neuroinflammatory inhibitors in vitro and in vivo from Aglaia odorata. Bioorg Chem 2024; 147:107335. [PMID: 38583250 DOI: 10.1016/j.bioorg.2024.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 μM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 μM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1β, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.
Collapse
Affiliation(s)
- Qianqian Yin
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Jinle Hao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Goyal R, Mittal P, Gautam RK, Kamal MA, Perveen A, Garg V, Alexiou A, Saboor M, Haque S, Farhana A, Papadakis M, Ashraf GM. Natural products in the management of neurodegenerative diseases. Nutr Metab (Lond) 2024; 21:26. [PMID: 38755627 PMCID: PMC11100221 DOI: 10.1186/s12986-024-00800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Neurodegenerative diseases represent one of the utmost imperative well-being health issues and apprehensions due to their escalating incidence of mortality. Natural derivatives are more efficacious in various preclinical models of neurodegenerative illnesses. These natural compounds include phytoconstituents in herbs, vegetables, fruits, nuts, and marine and freshwater flora, with remarkable efficacy in mitigating neurodegeneration and enhancing cognitive abilities in preclinical models. According to the latest research, the therapeutic activity of natural substances can be increased by adding phytoconstituents in nanocarriers such as nanoparticles, nanogels, and nanostructured lipid carriers. They can enhance the stability and specificity of the bioactive compounds to a more considerable extent. Nanotechnology can also provide targeting, enhancing their specificity to the respective site of action. In light of these findings, this article discusses the biological and therapeutic potential of natural products and their bioactive derivatives to exert neuroprotective effects and some clinical studies assessing their translational potential to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura-Punjab, India
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Rau, Indore, India.
| | - Mohammad Amjad Kamal
- Institute for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu,, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah,, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Uttar Pradesh, Saharanpur, India
- Princess Dr, Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak Haryana, 124001, India
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, 11741, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Sharjah, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Aljouf, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Zhu T, Liu H, Gao S, Jiang N, Chen S, Xie W. Effect of salidroside on neuroprotection and psychiatric sequelae during the COVID-19 pandemic: A review. Biomed Pharmacother 2024; 170:115999. [PMID: 38091637 DOI: 10.1016/j.biopha.2023.115999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health of individuals worldwide, and the risk of psychiatric sequelae and consequent mental disorders has increased among the general population, health care workers and patients with COVID-19. Achieving effective and widespread prevention of pandemic-related psychiatric sequelae to protect the mental health of the global population is a serious challenge. Salidroside, as a natural agent, has substantial pharmacological activity and health effects, exerts obvious neuroprotective effects, and may be effective in preventing and treating psychiatric sequelae and mental disorders resulting from stress stemming from the COVID-19 pandemic. Herein, we systematically summarise, analyse and discuss the therapeutic effects of salidroside in the prevention and treatment of psychiatric sequelae as well as its roles in preventing the progression of mental disorders, and fully clarify the potential of salidroside as a widely applicable agent for preventing mental disorders caused by stress; the mechanisms underlying the potential protective effects of salidroside are involved in the regulation of the oxidative stress, neuroinflammation, neural regeneration and cell apoptosis in the brain, the network homeostasis of neurotransmission, HPA axis and cholinergic system, and the improvement of synaptic plasticity. Notably, this review innovatively proposes that salidroside is a potential agent for treating stress-induced health issues during the COVID-19 pandemic and provides scientific evidence and a theoretical basis for the use of natural products to combat the current mental health crisis.
Collapse
Affiliation(s)
- Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiman Gao
- Department of Clinical Pharmacy, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, Donghu Road No. 115, Wuchang District, Wuhan 430071, China.
| | - Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200122, China.
| |
Collapse
|
6
|
Salgueiro WG, Soares MV, Martins CF, Paula FR, Rios-Anjos RM, Carrazoni T, Mori MA, Müller RU, Aschner M, Dal Belo CA, Ávila DS. Dopaminergic modulation by quercetin: In silico and in vivo evidence using Caenorhabditis elegans as a model. Chem Biol Interact 2023; 382:110610. [PMID: 37348670 PMCID: PMC10527449 DOI: 10.1016/j.cbi.2023.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.
Collapse
Affiliation(s)
- Willian Goulart Salgueiro
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marcell Valandro Soares
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cassiano Fiad Martins
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Fávero Reisdorfer Paula
- Laboratory for Development and Quality Control in Medicines (LDCQ), Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Thiago Carrazoni
- Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Roman-Ulrich Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Cháriston André Dal Belo
- Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil; Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil; Multidisciplinar Department, Federal University of São Paulo (UNIFESP), Angelica Street, 100- CEP 06110295, Osasco, SP, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
9
|
Han T, Zhang S, Wei R, Jia G, Wang B, Xu Q, Su J, Jiang C, Jin C. Synthesis and biological evaluation of scutellarein derivatives as neuroprotective agents via activating Nrf2/HO-1 pathway. Fitoterapia 2022; 160:105207. [DOI: 10.1016/j.fitote.2022.105207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
10
|
Jiang Q, Wei D, He X, Gan C, Long X, Zhang H. Phillyrin Prevents Neuroinflammation-Induced Blood-Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Front Pharmacol 2021; 12:719823. [PMID: 34744713 PMCID: PMC8565465 DOI: 10.3389/fphar.2021.719823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Phillyrin (Phi) is the main polyphenolic compound found in Forsythia suspensa. Recent studies have revealed that Phi has potent antioxidative and anti-inflammatory effects. However, whether Phi could relieve blood-brain barrier (BBB) damage following traumatic brain injury (TBI) remains unknown. Materials and Methods: Lipopolysaccharide (LPS) was used to activate primary microglia, which were then treated with different doses of Phi or the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist (GW9662). CCK-8 assay was used for evaluating cell viability, and the cytokines (including IL-1β, IL-6, TNFα, IL-4, IL-10, and TGFβ), microglial phenotypic markers (iNOS, COX2, and CD86 for "M1" polarization; Arg1, Ym1, and CD206 for "M2" polarization), PPARγ, and NF-κB were determined by RT-PCR, Western blot, or cellular immunofluorescence. Primary cultured mouse brain microvascular endothelial cells (BMECs) were stimulated by the condition medium (CM) from microglia. The cell viability, angiogenesis, and tight junction of BMECs were determined via CCK-8 assay, tube formation assay, and Western blot (for detecting MMP3, MMP9, ZO1, claudin-5, and occludin). Furthermore, the mouse TBI model was constructed and treated with Phi and/or GW9662. The BBB integrity was evaluated by H&E staining, Evans blue staining, and tissue immunofluorescence. Results: Phi markedly restrained the pro-inflammatory ("M1" state) cytokines and promoted anti-inflammatory ("M2" polarization) cytokines in LPS-mediated microglia. Phi mitigated "M1" polarization and promoted "M2" polarization of microglia via enhancing PPARγ and inhibiting the NF-κB pathway. The PPARγ antagonist GW9662 significantly repressed Phi-mediated anti-inflammatory effects. Meanwhile, Phi enhanced the viability, tube formation ability, and cell junction of BMECs. In the TBI mouse model, Phi promoted "M2" polarization, whereas it repressed the "M1" polarization of microglia. In addition, Phi reduced TBI-mediated BBB damage. However, the protective effects of Phi were reversed mainly by GW9662 treatment. Conclusion: Phi prevents BBB damage via inhibiting the neuroinflammation of microglia through the PPARγ/NF-κB pathway, which provides a potential therapeutic drug against TBI.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Wei
- Department of Neurosurgery, Tianyou Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Long
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Aldbass A, Amina M, Al Musayeib NM, Bhat RS, Al-Rashed S, Marraiki N, Fahmy R, El-Ansary A. Cytotoxic and anti-excitotoxic effects of selected plant and algal extracts using COMET and cell viability assays. Sci Rep 2021; 11:8512. [PMID: 33875747 PMCID: PMC8055880 DOI: 10.1038/s41598-021-88089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/28/2022] Open
Abstract
Excess glutamate in the central nervous system may be a major cause of neurodegenerative diseases with gradual loss and dysfunction of neurons. Primary or secondary metabolites from medicinal plants and algae show potential for treatment of glutamate-induced excitotoxicity. Three plant extracts were evaluated for impact on glutamate excitotoxicity-induced in primary cultures of retinal ganglion cells (RGC). These cells were treated separately in seven groups: control; Plicosepalus. curviflorus treated; Saussurea lappa treated; Cladophora glomerate treated. Cells were treated independently with 5, 10, 50, or 100 µg/ml of extracts of plant or alga material, respectively, for 2 h. Glutamate-treated cells (48 h with 5, 10, 50, or 100 µM glutamate); and P. curviflorus/glutamate; S. lappa/glutamate; C. glomerata/glutamate [pretreatment with extract for 2 h (50 and 100 µg/ml) before glutamate treatment with 100 µM for 48 h]. Comet and MTT assays were used to assess cell damage and cell viability. The number of viable cells fell significantly after glutamate exposure. Exposure to plant extracts caused no notable effect of viability. All tested plants extracts showed a protective effect against glutamate excitotoxicity-induced RGC death. Use of these extracts for neurological conditions related to excitotoxicity and oxidative stress might prove beneficial.
Collapse
Affiliation(s)
- Abeer Aldbass
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sara Al-Rashed
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rania Fahmy
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
- CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
12
|
Sheng X, Yang S, Wen X, Zhang X, Ye Y, Zhao P, Zang L, Peng K, Du E, Li S. Neuroprotective effects of Shende'an tablet in the Parkinson's disease model. Chin Med 2021; 16:18. [PMID: 33549148 PMCID: PMC7866695 DOI: 10.1186/s13020-021-00429-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shende'an tablet (SDA) is a newly capsuled Chinese herbal formula derived from the Chinese traditional medicine Zhengan Xifeng Decoction which is approved for the treatment of neurasthenia and insomnia in China. This study aimed to investigate the neuroprotective effects of SDA against Parkinson's disease (PD) in vitro and in vivo. METHODS In the present work, the neuroprotective effects and mechanism of SDA were evaluated in the cellular PD model. Male C57BL/6J mice were subject to a partial MPTP lesion alongside treatment with SDA. Behavioural test and tyrosine-hydroxylase immunohistochemistry were used to evaluate nigrostriatal tract integrity. HPLC analysis and Western blotting were used to assess the effect of SDA on dopamine metabolism and the expression of HO-1, PGC-1α and Nrf2, respectively. RESULTS Our results demonstrated that SDA had neuroprotective effect in dopaminergic PC12 cells with 6-OHDA lesion. It had also displayed efficient dopaminergic neuronal protection and motor behavior alleviation properties in MPTP-induced PD mice. In the PC12 cells and MPTP-induced Parkinson's disease animal models, SDA was highly efficacious in α-synuclein clearance associated with the activation of PGC-1α/Nrf2 signal pathway. CONCLUSIONS SDA demonstrated potential as a future therapeutic modality in PD through protecting dopamine neurons and alleviating the motor symptoms, mediated by the activation of PGC-1α/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Shuiyuan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Xiaomin Wen
- The Centre of Preventive, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Xin Zhang
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Yongfeng Ye
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Peng Zhao
- The Centre of Preventive, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Limin Zang
- Zhengzhou Yihe Hospital of Henan University, Zhengzhou, 450047, Henan, China
| | - Kang Peng
- The Centre of Preventive, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| | - Enming Du
- Henan Eye Institute, Henan Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, Henan University, School of Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Sai Li
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| |
Collapse
|
13
|
Afshari AR, Fanoudi S, Rajabian A, Sadeghnia HR, Mollazadeh H, Hosseini A. Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1113-1123. [PMID: 32963732 PMCID: PMC7491505 DOI: 10.22038/ijbms.2020.43687.10259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/17/2020] [Indexed: 01/12/2023]
Abstract
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2, and autophagy that are involved in neurodegenerative diseases pathophysiology. There are numerous findings on curcumin, astaxanthin, thymoquinone, and berberine, as natural products, which have outstanding effects in cell signaling far beyond their anti-oxidant activity, considering as a potential therapeutic target for glutamate excitotoxicity. Herein, we address the role of glutamate as a potential target in neurodegenerative diseases and discuss the protective effects of certain phytochemicals on glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M, Falzone L. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep 2019; 42:911-922. [PMID: 31322245 PMCID: PMC6682788 DOI: 10.3892/or.2019.7215] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
There is recent evidence to indicate the existence of an inverse association between the incidence of neurological disorders and cancer development. Concurrently, the transcriptional pathways responsible for the onset of glioblastoma multiforme (GBM) and Alzheimer's disease (AD) have been found to be mutually exclusive between the two pathologies. Despite advancements being made concerning the knowledge of the molecular mechanisms responsible for the development of GBM and AD, little is known about the identity of the microRNA (miRNAs or miRs) involved in the development and progression of these two pathologies and their possible inverse expression patterns. On these bases, the aim of the present study was to identify a set of miRNAs significantly de-regulated in both GBM and AD, and hence to determine whether the identified miRNAs exhibit an inverse association within the two pathologies. For this purpose, miRNA expression profiling datasets derived from the Gene Expression Omnibus (GEO) DataSets and relative to GBM and AD were used. Once the miRNAs significantly de-regulated in both pathologies were identified, DIANA-mirPath pathway prediction and STRING Gene Ontology enrichment analyses were performed to establish their functional roles in each of the pathologies. The results allowed the identification of a set of miRNAs found de-regulated in both GBM and AD, whose expression levels were inversely associated in the two pathologies. In particular, a strong negative association was observed between the expression levels of miRNAs in GBM compared to AD, suggesting that although the molecular pathways behind the development of these two pathologies are the same, they appear to be inversely regulated by miRNAs. Despite the identification of this set of miRNAs which may be used for diagnostic, prognostic and therapeutic purposes, further functional in vitro and in vivo evaluations are warranted in order to validate the diagnostic and therapeutic potential of the identified miRNAs, as well as their involvement in the development of GBM and AD.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria S Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria C Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|