1
|
Crescente G, Minervini G, Spagnuolo C, Moccia S. Cannabis Bioactive Compound-Based Formulations: New Perspectives for the Management of Orofacial Pain. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010106. [PMID: 36615298 PMCID: PMC9822121 DOI: 10.3390/molecules28010106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The management of orofacial pain to alleviate the quality of life of affected patients is becoming increasingly challenging for scientific research and healthcare professionals. From this perspective, in addition to conventional therapies, new alternatives are being sought, increasingly looking at the use of both natural and synthetic products. Cannabis sativa L. represents an interesting source of bioactive compounds, including non-psychoactive cannabinoids, flavonoids, and terpenes, many of which are effective in improving pain intensity. Here, we aim to analyze the possible mechanisms of action of the bioactive natural and synthetic hemp-derived compounds responsible for the modulatory effects on pain-related pathways. The ability of these compounds to act on multiple mechanisms through a synergistic effect, reducing both the release of inflammatory mediators and regulating the response of the endocannabinoid system, makes them interesting agents for alternative formulations to be used in orofacial pain.
Collapse
Affiliation(s)
| | - Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
- Correspondence: ; Tel.: +39-082-5299-423
| |
Collapse
|
2
|
Ibrahim I, Syamala S, Ayariga JA, Xu J, Robertson BK, Meenakshisundaram S, Ajayi OS. Modulatory Effect of Gut Microbiota on the Gut-Brain, Gut-Bone Axes, and the Impact of Cannabinoids. Metabolites 2022; 12:1247. [PMID: 36557285 PMCID: PMC9781427 DOI: 10.3390/metabo12121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a collection of microorganisms and parasites in the gastrointestinal tract. Many factors can affect this community's composition, such as age, sex, diet, medications, and environmental triggers. The relationship between the human host and the gut microbiota is crucial for the organism's survival and development, whereas the disruption of this relationship can lead to various inflammatory diseases. Cannabidiol (CBD) and tetrahydrocannabinol (THC) are used to treat muscle spasticity associated with multiple sclerosis. It is now clear that these compounds also benefit patients with neuroinflammation. CBD and THC are used in the treatment of inflammation. The gut is a significant source of nutrients, including vitamins B and K, which are gut microbiota products. While these vitamins play a crucial role in brain and bone development and function, the influence of gut microbiota on the gut-brain and gut-bone axes extends further and continues to receive increasing scientific scrutiny. The gut microbiota has been demonstrated to be vital for optimal brain functions and stress suppression. Additionally, several studies have revealed the role of gut microbiota in developing and maintaining skeletal integrity and bone mineral density. It can also influence the development and maintenance of bone matrix. The presence of the gut microbiota can influence the actions of specific T regulatory cells, which can lead to the development of bone formation and proliferation. In addition, its metabolites can prevent bone loss. The gut microbiota can help maintain the bone's equilibrium and prevent the development of metabolic diseases, such as osteoporosis. In this review, the dual functions gut microbiota plays in regulating the gut-bone axis and gut-brain axis and the impact of CBD on these roles are discussed.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Soumyakrishnan Syamala
- Departments of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Boakai K. Robertson
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Sreepriya Meenakshisundaram
- Department of Microbiology and Biotechnology, JB Campus, Bangalore University, Bangalore 560 056, Karnataka, India
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
3
|
Mastinu A, Ascrizzi R, Ribaudo G, Bonini SA, Premoli M, Aria F, Maccarinelli G, Gianoncelli A, Flamini G, Pistelli L, Memo M. Prosocial Effects of Nonpsychotropic Cannabis sativa in Mice. Cannabis Cannabinoid Res 2022; 7:170-178. [PMID: 34370607 PMCID: PMC9070742 DOI: 10.1089/can.2021.0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction:Cannabis sativa L. (C. sativa) is used since ancient times to produce fabrics, baskets, and cords. Later, different ethnic groups used to burn the leaves and flowers of psychotropic cultivars with high Δ9-tetrahydrocannabinol (D9-THC) levels, during the religious or propitiatory rites to alter the state of consciousness. To date, it is not known whether also nonpsychotropic cultivars of C. sativa were used during these rites, and whether these varieties could have an effect on human behavior. This study aimed to evaluate the behavioral effects of an extract of nonpsychotropic C. sativa (NP-CS) in mice. Materials and Methods: An extract of a nonpsychotropic cultivar of C. sativa dissolved in medium-chain triglyceride oil was used and the different phytochemical components were evaluated. The relative composition in terms of phytocannabinoid content was assessed by reverse phase high-performance liquid chromatography coupled to UV detection (RP-HPLC-UV), and the volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). In addition, the behavioral effect of NP-CS was assessed on a wild-type mouse model. The animals were treated for 14 days (oral gavage) and motility, anxiety, and social effects were assessed. Results: RP-HPLC-UV analysis demonstrated that D9-THC was present in lower concentration with respect to other cannabinoids, like cannabidiol. Furthermore, the GC-MS analysis revealed the presence of several terpenoids. Concerning in vivo studies, chronic treatment with NP-CS did not alter body weight, motility, and anxiety and increased social interaction. Conclusions: This study highlighted the prosocial effects of NP-CS.
Collapse
Affiliation(s)
- Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Ribaudo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Montoya-Alatriste CA, Alarcon-Aguilar FJ. Cannabis and cannabinoids as an alternative remedy in metabolic syndrome. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
6
|
Abstract
Legalization of cannabidiol (CBD) products has ignited interest in clinical practice and research. One desired indication includes possible pain-relieving effects of CBD. The purposes of the current article are to (1) clarify terminology relevant to cannabinoids; (2) explain and understand the pharmacotherapeutics of CBD; (3) examine research of the current use of CBD by older adults for treating pain; (4) discuss safety considerations with using CBD products; and (5) provide best practice recommendations for clinicians as they advise their older adult patients. A review of the literature demonstrated mixed results on the efficacy of CBD in relieving pain in older adults. There is inconsistency in the labeling of over-the-counter CBD products that can result in safety issues and will require more federal quality control. Likewise, gaps in knowledge regarding safety and efficacy of CBD use in older adults are vast and require further research. [Journal of Gerontological Nursing, 47(7), 6-15.].
Collapse
|
7
|
Allosteric Modulation of the CB1 Cannabinoid Receptor by Cannabidiol-A Molecular Modeling Study of the N-Terminal Domain and the Allosteric-Orthosteric Coupling. Molecules 2021; 26:molecules26092456. [PMID: 33922473 PMCID: PMC8122825 DOI: 10.3390/molecules26092456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.
Collapse
|
8
|
Wakshlag JJ, Schwark WS, Deabold KA, Talsma BN, Cital S, Lyubimov A, Iqbal A, Zakharov A. Pharmacokinetics of Cannabidiol, Cannabidiolic Acid, Δ9-Tetrahydrocannabinol, Tetrahydrocannabinolic Acid and Related Metabolites in Canine Serum After Dosing With Three Oral Forms of Hemp Extract. Front Vet Sci 2020; 7:505. [PMID: 33102539 PMCID: PMC7498943 DOI: 10.3389/fvets.2020.00505] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023] Open
Abstract
Cannabidiol (CBD)-rich hemp extract use is increasing in veterinary medicine with little examination of serum cannabinoids. Many products contain small amounts of Δ9-tetrahydrocannabinol (THC), and precursor carboxylic acid forms of CBD and THC known as cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA). Examination of the pharmacokinetics of CBD, CBDA, THC, and THCA on three oral forms of CBD-rich hemp extract that contained near equal amounts of CBD and CBDA, and minor amounts (<0.3% by weight) of THC and THCA in dogs was performed. In addition, we assess the metabolized psychoactive component of THC, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and CBD metabolites 7-hydroxycannabidiol (7-OH-CBD) and 7-nor-7-carboxycannabidiol (7-COOH-CBD) to better understand the pharmacokinetic differences between three formulations regarding THC and CBD, and their metabolism. Six purpose-bred female beagles were utilized for study purposes, each having an initial 7-point, 24-h pharmacokinetic study performed using a dose of 2 mg/kg body weight of CBD/CBDA (~1 mg/kg CBD and ~1 mg/kg CBDA). Dogs were then dosed every 12 h for 2 weeks and had further serum analyses at weeks 1 and 2, 6 h after the morning dose to assess serum cannabinoids. Serum was analyzed for each cannabinoid or cannabinoid metabolite using liquid chromatography and tandem mass spectroscopy (LC-MS/MS). Regardless of the form provided (1, 2, or 3) the 24-h pharmacokinetics for CBD, CBDA, and THCA were similar, with only Form 2 generating enough data above the lower limit of quantitation to assess pharmacokinetics of THC. CBDA and THCA concentrations were 2- to 3-fold higher than CBD and THC concentrations, respectively. The 1- and 2-week steady-state concentrations were not significantly different between the two oils or the soft chew forms. CBDA concentrations were statistically higher with Form 2 than the other forms, showing superior absorption/retention of CBDA. Furthermore, Form 1 showed less THCA retention than either the soft chew Form 3 or Form 2 at weeks 1 and 2. THC was below the quantitation limit of the assay for nearly all samples. Overall, these findings suggest CBDA and THCA are absorbed or eliminated differently than CBD or THC, respectively, and that a partial lecithin base provides superior absorption and/or retention of CBDA and THCA.
Collapse
Affiliation(s)
- Joseph J Wakshlag
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Wayne S Schwark
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Kelly A Deabold
- University of Florida Comparative Diagnostic and Population Medicine, Gainesville, FL, United States
| | - Bryce N Talsma
- University of Florida Comparative Diagnostic and Population Medicine, Gainesville, FL, United States
| | - Stephen Cital
- Ellevet Sciences, Product Development and Scientific Communications, Portland, ME, United States
| | - Alex Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Asif Iqbal
- Toxicology Research Laboratory, Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Alexander Zakharov
- Toxicology Research Laboratory, Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Elhady SS, Eltamany EE, Shaaban AE, Bagalagel AA, Muhammad YA, El-Sayed NM, Ayyad SN, Ahmed AAM, Elgawish MS, Ahmed SA. Jaceidin Flavonoid Isolated from Chiliadenus montanus Attenuates Tumor Progression in Mice via VEGF Inhibition: In Vivo and In Silico Studies. PLANTS 2020; 9:plants9081031. [PMID: 32823927 PMCID: PMC7464537 DOI: 10.3390/plants9081031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Phytochemical study of Chiliadenus montanus aerial parts afforded six compounds; Intermedeol (1), 5α-hydroperoxy-β-eudesmol (2), 5,7-dihydroxy-3,3’,4’-trimethoxyflavone (3), 5,7,4’-trihydroxy-3,6,3’-trimethoxyflavone (jaceidin) (4), eudesm-11,13-ene-1β,4β,7α-triol (5) and 1β,4β,7β,11-tetrahydroxyeudesmane (6). These compounds were identified based on their NMR spectral data. The isolated compounds were tested for their cytotoxicity against liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). Jaceidin flavonoid (4) exhibited the highest cytotoxic effect in vitro. Therefore, both of jaceidin and C. montanus extract were evaluated for their in vivo anti-tumor activity against Ehrlich’s ascites carcinoma (EAC). Compared to control group, jaceidin and C. montanus extract decreased the tumor weight, improved the histological picture of tumor cells, lowered the levels of VEGF and ameliorate the oxidative stress. Molecular docking and in silico studies suggested that jaceidin was a selective inhibitor of VEGF-mediated angiogenesis with excellent membrane permeability and oral bioavailability.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
| | - Amera E. Shaaban
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Norhan M. El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt;
| | - Seif N. Ayyad
- Department of Organic Chemistry, Faculty of Science, Damietta University, New Damietta 34511, Egypt;
| | - Amal A. M. Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Elgawish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
- Correspondence: ; Tel.: +20-010-92638387; Fax: +20-064-3230741
| |
Collapse
|
10
|
Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L. Antioxidant Potential of Psychotropic Drugs: From Clinical Evidence to In Vitro and In Vivo Assessment and toward a New Challenge for in Silico Molecular Design. Antioxidants (Basel) 2020; 9:E714. [PMID: 32781750 PMCID: PMC7465375 DOI: 10.3390/antiox9080714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies. Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations, the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in patients' treatment. Anyway, some drugs possess antioxidant capacity themselves and this aspect is discussed in this review, focusing on antipsychotics and antidepressants. In the context of a collection of clinical observations, in vitro and in vivo results are critically reported, often highlighting controversial aspects. Finally, a new challenge is discussed, i.e., the possibility of assessing in silico the antioxidant potential of these drugs, exploiting computational chemistry methodologies and machine learning. Despite the physiological environment being incredibly complex and the detection of meaningful oxidative stress biomarkers being all but an easy task, a rigorous and systematic analysis of the structural and reactivity properties of antioxidant drugs seems to be a promising route to better interpret therapeutic outcomes and provide elements for the rational design of novel drugs.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
11
|
Wakshlag JJ, Cital S, Eaton SJ, Prussin R, Hudalla C. Cannabinoid, Terpene, and Heavy Metal Analysis of 29 Over-the-Counter Commercial Veterinary Hemp Supplements. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2020; 11:45-55. [PMID: 32346530 PMCID: PMC7169471 DOI: 10.2147/vmrr.s248712] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The use of veterinary low tetrahydrocannabinol (THC) Cannabis sativa (ie, hemp) products has increased in popularity for a variety of pet ailments. Low-THC Cannabis sativa is federally legal for sale and distribution in the USA, and the rise in internet commerce has provided access to interested consumers, with minimal quality control. MATERIALS AND METHODS We performed an internet word search of "hemp extract and dog" or "CBD product and dog" and analyzed 29 products that were using low-THC Cannabis sativa extracts in their production of supplements. All products were tested for major cannabinoids including cannabidiol (CBD), ∆9-tetrahydrocannabinol (THC), cannabigerol (CBG), and other minor cannabinoids, as well as their carboxylic acid derivatives (CBDA, THCA, CBGA) using an ISO/IEC 17025 certified laboratory. Products were also tested for major terpenes and heavy metals to understand constituents in the hemp plants being extracted and distributed. RESULTS All products were below the federal limit of 0.3% THC with variable amounts of CBD (0-88 mg/mL or g). Only two products did not supply a CBD or total cannabinoid concentration on their packaging or website, while 22/29 could supply a certificate of analysis (COA) from a third-party laboratory. Ten of the 27 products were within 10% of the total cannabinoid concentrations of their label claim with a median concentration of 93% of claims (0-154%). Heavy metal contamination was found in 4/29 products, with lead being the most prevalent contaminant (3/29). CONCLUSION The products analyzed had highly variable concentrations of CBD or total cannabinoids with only 18 of 29 being appropriately labeled according to current FDA non-medication, non-dietary supplement or non-food guidelines. Owners and veterinarians wanting to utilize CBD-rich Cannabis sativa products should be aware of low-concentration products and should obtain a COA enabling them to fully discuss the implications of use and calculated dosing before administering to pets.
Collapse
Affiliation(s)
- Joseph J Wakshlag
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY14853, USA
| | - Stephen Cital
- ElleVet Sciences, Product Development and Scientific Communications, Portland, ME, USA
| | | | - Reece Prussin
- ElleVet Sciences, Product Development and Scientific Communications, Portland, ME, USA
| | | |
Collapse
|
12
|
Variation in Terpene Profiles of Thymus vulgaris in Water Deficit Stress Response. Molecules 2020; 25:molecules25051091. [PMID: 32121165 PMCID: PMC7179171 DOI: 10.3390/molecules25051091] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022] Open
Abstract
Thyme (Thymus spp.) volatiles predominantly consisting of monoterpenes and sesquiterpenes, serve as antimicrobial, antiseptic and antioxidant in phytomedicine. They also play a key role in plants as secondary metabolites via their potential role against herbivores, attracting pollinators and abiotic stress tolerance. Plant volatiles are affected by different environmental factors including drought. Here, the effect of prolonged water deficit stress on volatile composition was studied on the sensitive and tolerant thyme plant cultivars (T. vulgaris Var. Wagner and T. vulgaris Var. Varico3, respectively). Volatile sampling along with morpho–physiological parameters such as soil moisture, water potential, shoot dry weight, photosynthetic rate and water content measurements were performed on one-month-old plants subsequent to water withholding at 4-day intervals until the plants wilted. The tolerant and sensitive plants had clearly different responses at physiological and volatile levels. The most stress-induced changes on the plants’ physiological traits occurred in the photosynthetic rates, where the tolerant plants maintained their photosynthesis similar to the control ones until the 8th day of the drought stress period. While the analysis of the volatile compounds (VOCs) of the sensitive thyme plants displayed the same pattern for almost all of them, in the tolerant plants, the comparison of the pattern of changes in the tolerant plants revealed that the changes could be classified into three separate groups. Our experimental and theoretical studies totally revealed that the most determinant compounds involved in drought stress adaptation included α-phellandrene, O-cymene, γ-terpinene and β-caryophyelene. Overall, it can be concluded that in the sensitive plants trade-off between growth and defense, the tolerant ones simultaneously activate their stress response mechanism and continue their growth.
Collapse
|