1
|
Fu L, Ren H, Wang C, Zhao Y, Zou B, Zhang X. Formation of PEG-PLGA Microspheres for Controlled Release of Simvastatin and Carvacrol: Enhanced Lipid-Lowering Efficacy and Improved Patient Compliance in Hyperlipidemia Therapy. Polymers (Basel) 2025; 17:574. [PMID: 40076067 PMCID: PMC11902393 DOI: 10.3390/polym17050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Polymer-based drug-controlled release systems offer greater efficacy and potency than conventional therapies. However, prominent drug side effects, lower circulation, and low drug loading capabilities limit their application range. In this work, the combination of Simvastatin (SIV) and Carvacrol (CAV) into PEG-PLGA microspheres (SIV-CAV-PP-MS) was achieved via an emulsification-solvent evaporation technique, resulting in microspheres characterized by high encapsulation efficiency and reduced particle size. In vitro studies demonstrated that the cumulative drug release increased with higher SIV and CAV levels in the release medium, reaching 88.91% and 89.35% at 25 days. Pharmacokinetic analysis revealed that the concentrations of SIV and CAV reached their maximum levels at approximately seven days in the SIV-CAV-PP-MS group, which indicates that using PEG-PLGA as a carrier significantly delays drug release. In vivo, evaluation demonstrated that the SIV-CAV-PP-MS high-dose group and positive drug control group showed reductions in low-density lipoprotein cholesterol levels by 0.39-fold and 0.36-fold compared to the Hyperlipidemia model group, and the addition of CAV significantly enhanced the lipid-lowering effects of SIV. Histological examinations indicated that the SIV-CAV-PP-MS medium-dose group displayed histological features more closely resembling those of normal mice compared to the Simvastatin control group, with a well-organized hepatocyte structure, a significant reduction in lipids, and improved liver health. The prepared polymeric microsphere utilizing SIV and SAV will be a promising dosage form for hyperlipidemia disease patients, with superior lipid-lowering efficacy and improved patient compliance.
Collapse
Affiliation(s)
- Lin Fu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.F.); (H.R.); (C.W.); (B.Z.)
| | - Hengxin Ren
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.F.); (H.R.); (C.W.); (B.Z.)
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.F.); (H.R.); (C.W.); (B.Z.)
| | - Yaxin Zhao
- College of Heilongjiang, University of Chinese Medicine, Jiamusi 154007, China;
| | - Bohang Zou
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.F.); (H.R.); (C.W.); (B.Z.)
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.F.); (H.R.); (C.W.); (B.Z.)
| |
Collapse
|
2
|
Diab F, Zbeeb H, Zeaiter L, Baldini F, Pagano A, Minicozzi V, Vergani L. Unraveling the metabolic activities of bioactive compounds on cellular models of hepatosteatosis and adipogenesis through docking analysis with PPARs. Sci Rep 2024; 14:28196. [PMID: 39548141 PMCID: PMC11568224 DOI: 10.1038/s41598-024-78374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Obesity is associated with fatty liver disease. Available therapies show modest efficacy, and nutraceuticals with good effectiveness and safety are largely investigated. We focused on five natural compounds, three plant phenolic compounds (carvacrol, rosmarinic acid, silybin), and two thyroid hormones (T2: 3,5-diiodo-l-thyronine; T3: 3,5,3'-triiodo-L-thyronine) as comparison, to assess their beneficial effects on two cellular models of hepatosteatosis and adipogenesis. All compounds ameliorated the lipid accumulation and oxidative stress in both models, but with different potencies. The peroxisome proliferator-activated receptors (PPARs) are pivotal controllers of adipogenesis and lipid metabolism. For the main isoforms, PPARγ and PPARa, we assessed their possible binding to the compounds by molecular docking calculations, and their expression pattern by real-time PCR. All compounds bind both PPARs with different affinity, while not all compounds affect their expression. The results may clarify the distinctive molecular mechanisms underlying the action of the five compounds in the different cell models with possible applications to treat obesity.
Collapse
Affiliation(s)
- Farah Diab
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Hawraa Zbeeb
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lama Zeaiter
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- Istituto Italiano Tecnologia, Genova, Italy
| | | | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata and INFN - Section of Rome Tor Vergata, Rome, Italy
| | - Laura Vergani
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
3
|
Khazdair MR, Moshtagh M, Anaeigoudari A, Jafari S, Kazemi T. Protective effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction - A comprehensive review. Food Sci Nutr 2024; 12:3137-3149. [PMID: 38726397 PMCID: PMC11077248 DOI: 10.1002/fsn3.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a class of illnesses that affect the heart or blood vessels, leading to the most common causes of death worldwide. In 2017, CVD caused approximately 17.8 million deaths that were increased approximately to 20.5 million deaths in 2021, globally. Also, nearly 80% of worldwide CVD deaths occur in some countries. Some herbs and their constituents due to their several pharmacological activities have been used for medicinal purposes. Carvacrol is a phenolic mono-terpenoid found in the oils of aromatic herbs with several biological properties. The possible therapeutic effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction were summarized in the current study. The data from this review article were obtained by searching the terms including; "Carvacrol", "Hypertension", Hypotensive, "Cardiac dysfunction", "Ischemia", "Lipid profile", and Oxidative stress in several web databases such as Web of Sciences, PubMed Central, and Google Scholar, until November 2023. The results of the reviewed studies revealed that carvacrol inhibits acetylcholinesterase (AchE) activity and alters lipid profiles, reducing heart rate as well as systolic and diastolic blood pressure (BP). Carvacrol also decreased the proinflammatory cytokine (IL-1β), while increasing secretion of anti-inflammatory cytokine (IL-10). Moreover, carvacrol improved oxidative stress and mitigated the number of apoptotic cells. The pharmacological effects of carvacrol on CVD might be through its antioxidative, anti-inflammatory, and antiapoptotic effects. The mentioned therapeutic effects of carvacrol on lipid profile, hypertension, and cardiac dysfunction indicate the possible remedy effect of carvacrol for the treatment of CVD.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mozhgan Moshtagh
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | - Shima Jafari
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Clinical Pharmacy, School of PharmacyBirjand University of Medical SciencesBirjandIran
| | - Toba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
4
|
Khalil M, Piccapane F, Vacca M, Celano G, Mahdi L, Perniola V, Apa CA, Annunziato A, Iacobellis I, Procino G, Calasso M, De Angelis M, Caroppo R, Portincasa P. Nutritional and Physiological Properties of Thymbra spicata: In Vitro Study Using Fecal Fermentation and Intestinal Integrity Models. Nutrients 2024; 16:588. [PMID: 38474717 DOI: 10.3390/nu16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Francesca Piccapane
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Laura Mahdi
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Valeria Perniola
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Procino
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
5
|
Cui W, Zhou H, Zhang J, Zhang J, Wu D, Rong Y, Liu F, Liu J, Liu H, Wei B, Tang Y, Liao X, Xu X. Hepatoprotective effect of Artemisia Argyi essential oil on bisphenol A-induced hepatotoxicity via inhibition of ferroptosis in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2416-2428. [PMID: 37347548 DOI: 10.1002/tox.23877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The environmental pollutant bisphenol A (BPA), used in the manufacture of plastic packaging materials for various diets, is widely distributed in the environment and causes severe hepatotoxicity by inducing oxidative stress. Artemisia argyi essential oil (AAEO), a volatile oil component isolated from Artemisia argyi H.Lév. & Vaniot, has pharmacological effects, especially for hepatoprotective actions. However, the potential effect of AAEO in BPA induced hepatotoxicity has not been characterized. First, we analyzed the chemical composition in AAEO by gas chromatography-mass spectrometry. Herein, we investigated the effect of AAEO on hepatic metabolic changes in mice exposed to BPA. Results showed that compared with the BPA group, AAEO could reduce the level of liver function enzymes in BPA mice serum, and ameliorate hepatic lesions and fibrosis. Additionally, 20 differential metabolites screened by metabolomics were mainly involved in the reprogramming of glutathione metabolism, purine metabolism, and polyunsaturated fatty acid synthesis. Moreover, AAEO could reduce hepatic ferroptosis induced by BPA, as demonstrated by reducing xanthine oxidase activity, up-regulating the activities of glutathione peroxidase 4 (GPX4), superoxide dismutase, and catalase and the expression of SLC7A11 to promote the glutathione synthetic, while inhibiting transferrin receptor 1 (TFR1) expression to reduce the accumulation of Fe2+ in cells. Therefore, our study identified AAEO as a hepatic protectant against BPA-induced hepatotoxicity by reversing the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Weiqi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingxian Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junwei Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Deqiao Wu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Rong
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fanglin Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junhui Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haiyan Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Youcai Tang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xinglin Liao
- Nanyang Lanhaisenyuan Medical Technology Ltd, Co, Nanyang, China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Baldini F, Diab F, Serale N, Zeaiter L, Portincasa P, Diaspro A, Vergani L. Adipocyte-hepatocyte crosstalk in cellular models of obesity: Role of soluble factors. Life Sci 2023; 317:121464. [PMID: 36731646 DOI: 10.1016/j.lfs.2023.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Hepatic steatosis is often a consequence of obesity. Adipose tissue is an important endocrine regulator of metabolic homeostasis in the body. In obesity, adipocytes become hypertrophic and develop an inflammatory phenotype, altering the panel of secreted adipokines. Moreover, excess fatty acids are, in part, released by adipocytes and delivered to the liver. These multiple pathways of adipose-liver crosstalk contribute to the development and progression of liver disease: TNFα induces hepatocyte dysfunction, excess of circulating fatty acids promotes hepatic steatosis and inflammation, whilst adipokines mediate and exacerbate liver injury. In this study, we investigated in vitro the effects and mechanisms of the crosstalk between adipocytes and hepatocytes, as a function of the different adipocyte status (mature vs hypertrophic) being mediated by soluble factors. We employed the conditioned medium method to test how mature and hypertrophic adipocytes distinctively affect the liver, leading to metabolic dysfunction. The media collected from adipocytes were characterized by high triglyceride content and led to lipid accumulation and fat-dependent dysfunction in hepatocytes. The present findings seem to suggest that, in addition to triglycerides, other soluble mediators, cytokines, are released by mature and hypertrophic adipocytes and influence the metabolic status of liver cells. Understanding the precise factors involved in the pathogenesis and pathophysiology of NAFLD in obesity will provide important insights into the mechanisms responsible for the metabolic complications of obesity, paving the way for new possible approaches.
Collapse
Affiliation(s)
- Francesca Baldini
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| | - Nadia Serale
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Lama Zeaiter
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6 - Torre di Francia, 16149 Genova, Italy.
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|