1
|
Silva-Reis SC, Correia XC, Costa-Almeida HF, Pires-Lima BL, Maronde D, Costa VM, García-Mera X, Cruz L, Brea J, Loza MI, Rodríguez-Borges JE, Sampaio-Dias IE. Stapling Amantadine to Melanostatin Neuropeptide: Discovery of Potent Positive Allosteric Modulators of the D 2 Receptors. ACS Med Chem Lett 2023; 14:1656-1663. [PMID: 38116429 PMCID: PMC10726482 DOI: 10.1021/acsmedchemlett.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
This work describes the synthesis and pharmacological and toxicological evaluation of melanostatin (MIF-1) bioconjugates with amantadine (Am) via a peptide linkage. The data from the functional assays at human dopamine D2 receptors (hD2R) showed that bioconjugates 1 (EC50 = 26.39 ± 3.37 nM) and 2 (EC50 = 17.82 ± 4.24 nM) promote a 3.3- and 4.9-fold increase of dopamine potency, respectively, at 0.01 nM, with no effect on the efficacy (Emax = 100%). In this assay, MIF-1 was only active at the highest concentration tested (EC50 = 23.64 ± 6.73 nM, at 1 nM). Cytotoxicity assays in differentiated SH-SY5Y cells showed that both MIF-1 (94.09 ± 5.75%, p < 0.05) and carbamate derivative 2 (89.73 ± 4.95%, p < 0.0001) exhibited mild but statistical significant toxicity (assessed through the MTT reduction assay) at 200 μM, while conjugate 1 was found nontoxic at this concentration.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xavier C. Correia
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo F. Costa-Almeida
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Beatriz L. Pires-Lima
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daiane Maronde
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Vera M. Costa
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Department of Biological Sciences, Faculty
of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xerardo García-Mera
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luís Cruz
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José Brea
- Innopharma
Screening Platform, Biofarma Research group, Centre of Research in
Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma
Screening Platform, Biofarma Research group, Centre of Research in
Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Gupta R, Raghuvanshi S. Human Microbiome and Autism-Spectrum Disorders. PROBIOTICS, PREBIOTICS, SYNBIOTICS, AND POSTBIOTICS 2023:347-360. [DOI: 10.1007/978-981-99-1463-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Banks WA. Abba J. Kastin - Obituary. Peptides 2022; 154:170804. [PMID: 35527380 DOI: 10.1016/j.peptides.2022.170804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA.
| |
Collapse
|
4
|
Mehra A, Arora G, Gaurav, Kaur M, Singh H, Singh B, Kaur S. Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. J Tradit Complement Med 2022; 13:135-149. [PMID: 36970459 PMCID: PMC10037072 DOI: 10.1016/j.jtcme.2022.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Autism is a complex neurodevelopmental disorder which disrupts communication, social and interactive skills followed by appearance of repetitive behavior. The underlying etiology remains incomprehensible but genetic and environmental factors play a key role. Accumulated evidence shows that alteration in level of gut microbes and their metabolites are not only linked to gastrointestinal problems but also to autism. So far the mix of microbes that is present in the gut affects human health in numerous ways through extensive bacterial-mammalian cometabolism and has a marked influence over health via gut-brain-microbial interactions. Healthy microbiota may even ease the symptoms of autism, as microbial balance influences brain development through the neuroendocrine, neuroimmune, and autonomic nervous systems. In this article, we focused on reviewing the correlation between gut microbiota and their metabolites on symptoms of autism by utilizing prebiotics, probiotics and herbal remedies to target gut microflora hence autism.
Collapse
|
5
|
Guan G, Qizhuang Lv, Liu S, Jiang Z, Zhou C, Liao W. 3D-bioprinted peptide coupling patches for wound healing. Mater Today Bio 2022; 13:100188. [PMID: 34977527 PMCID: PMC8683759 DOI: 10.1016/j.mtbio.2021.100188] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic wounds caused by severe trauma remain a serious challenge for clinical treatment. In this study, we developed a novel angiogenic 3D-bioprinted peptide patch to improve skin wound healing. The 3D-bioprinted technology can fabricate individual patches according to the shape characteristics of the damaged tissue. Gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) have excellent biocompatibility and biodegradability, and were used as a biomaterial to produce bioprinted patches. The pro-angiogenic QHREDGS peptide was covalently conjugated to the 3D-bioprinted GelMA/HAMA patches, extending the release of QHREDGS and improving the angiogenic properties of the patch. Our results demonstrated that these 3D-bioprinted peptide patches showed excellent biocompatibility, angiogenesis, and tissue repair both in vivo and in vitro. These findings indicated that 3D-bioprinted peptide patches improved skin wound healing and could be used in other tissue engineering applications.
Collapse
Affiliation(s)
- Gaopeng Guan
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Shengyuan Liu
- Longyan People Hospital of Fujian, Pneumology Department, Longlan, 361000, Fujian, China
| | - Zhenzhen Jiang
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Chunxia Zhou
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| |
Collapse
|
6
|
Thakur P, Shrivastava R, Shrivastava VK. Effects of oxytocin and antagonist antidote atosiban on body weight and food intake of female mice, Mus musculus. Metabol Open 2021; 12:100146. [PMID: 34825159 PMCID: PMC8603196 DOI: 10.1016/j.metop.2021.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Growing evidence suggests that oxytocin (OT) plays an important factor for the control of food intake, body weight, and energy metabolism in human and non-human animals. It has reported previously, the downregulation in oxytocin receptors (OTRs) expression is linked with the development of obesity, but exogenous OT reverse body weight and food intake in obese animal model. It is important to know that, whether intraperitoneal administration crosses blood brain barrier. Therefore, in the present experiment, we study the impact of intraperitoneal administration of synthetic OT 0.0116 mg/kg and antagonist atosiban (OTA) 1 mg/kg on food intake, and body weight of female mice, Mus musculus for different duration i.e. 30, 60, and 90 days. In this study, it was observed that there was significant decrease (p<0.001, one-way analysis of variance [ANOVA]) in the body weight (BW), food intake, and gonadosmatic indices (GSI) after the intraperitoneal exposure of OT at dose 0.0116 mg/kg up to 90 days and inhibits via antagonist atosiban. These results indicates that intraperitoneal administration of OT can be used for treatment for longer duration without any side effects and maintains homeostasis in physiologic system regulates body weight and gonadal weight in female mice, which represent an important therapeutic tool for the obesity and metabolic disorder in female.
Collapse
Key Words
- AN, Arcuate Nucleus
- ANOVA, One-Way Analysis of Variance
- BBB, Blood Brain Barrier
- BW, Body Weight
- Body weight
- CNS, Central Nervous System
- Energy metabolism
- Food intake
- GI, Gastrointestinal
- GPCR, G-Protein Coupled Receptor
- GSI, Gonadosomatic Indices
- Gonadosomatic indices
- HPG, Hypothalamic-Pituitary-Gonadal Axis
- I.P., Intraperitoneal
- ICV, Intracerebroventricular
- NTS, Nucleus Tractus Solitarius
- OT, Oxytocin
- OTA, Antagonist Atosiban
- OTRs, Oxytocin Receptors
- Oxytocin
- PCOS, Polycystic Ovary Syndrome
- PVN, Paraventricular Nuclei
- SEM, Standard Error of Mean
- SIM1, Single Minded 1 Gene
- SON, Supraoptic Nuclei
- VP, Vasopressin
- VTA, Ventral Tegmental Area
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Renu Shrivastava
- Zoology Department, Sri Sathya Sai, College for Women, Bhopal, Madhya Pradesh, 262024, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| |
Collapse
|
7
|
Yang CH, Onda DA, Oakhill JS, Scott JW, Galic S, Loh K. Regulation of Pancreatic β-Cell Function by the NPY System. Endocrinology 2021; 162:6213414. [PMID: 33824978 DOI: 10.1210/endocr/bqab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/24/2023]
Abstract
The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic β-cell function and its therapeutic implications for diabetes.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Danise-Ann Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Jiang Z, Lietz CB, Podvin S, Yoon MC, Toneff T, Hook V, O’Donoghue AJ. Differential Neuropeptidomes of Dense Core Secretory Vesicles (DCSV) Produced at Intravesicular and Extracellular pH Conditions by Proteolytic Processing. ACS Chem Neurosci 2021; 12:2385-2398. [PMID: 34153188 PMCID: PMC8267839 DOI: 10.1021/acschemneuro.1c00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
Neuropeptides mediate
cell–cell signaling in the nervous
and endocrine systems. The neuropeptidome is the spectrum of peptides
generated from precursors by proteolysis within dense core secretory
vesicles (DCSV). DCSV neuropeptides and contents are released to the
extracellular environment where further processing for neuropeptide
formation may occur. To assess the DCSV proteolytic capacity for production
of neuropeptidomes at intravesicular pH 5.5 and extracellular pH 7.2,
neuropeptidomics, proteomics, and protease assays were conducted using
chromaffin granules (CG) purified from adrenal medulla. CG are an
established model of DCSV. The CG neuropeptidome consisted of 1239
unique peptides derived from 15 proneuropeptides that were colocalized
with 64 proteases. Distinct CG neuropeptidomes were generated at the
internal DCSV pH of 5.5 compared to the extracellular pH of 7.2. Class-specific
protease inhibitors differentially regulated neuropeptidome production
involving aspartic, cysteine, serine, and metallo proteases. The substrate
cleavage properties of CG proteases were assessed by multiplex substrate
profiling by mass spectrometry (MSP-MS) that uses a synthetic peptide
library containing diverse cleavage sites for endopeptidases and exopeptidases.
Parallel inhibitor-sensitive cleavages for neuropeptidome production
and peptide library proteolysis led to elucidation of six CG proteases
involved in neuropeptidome production, represented by cathepsins A,
B, C, D, and L and carboxypeptidase E (CPE). The MSP-MS profiles of
these six enzymes represented the majority of CG proteolytic cleavages
utilized for neuropeptidome production. These findings provide new
insight into the DCSV proteolytic system for production of distinct
neuropeptidomes at the internal CG pH of 5.5 and at the extracellular
pH of 7.2.
Collapse
Affiliation(s)
- Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neuroscience and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Giri RS, Roy S, Dolai G, Manne SR, Mandal B. FeCl
3
‐Mediated Boc Deprotection: Mild Facile Boc‐Chemistry in Solution and on Resin. ChemistrySelect 2020. [DOI: 10.1002/slct.201904617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajat S. Giri
- Department of Chemistry Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati Assam 781039 India
| | - Sayanta Roy
- Department of Chemistry Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati Assam 781039 India
| | - Gobinda Dolai
- Department of Chemistry Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati Assam 781039 India
| | - Srinivasa R. Manne
- Department of Chemistry Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati Assam 781039 India
| | - Bhubaneswar Mandal
- Department of Chemistry Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
10
|
Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun (Camb) 2019; 55:10192-10213. [PMID: 31411602 DOI: 10.1039/c9cc03346g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Light is unsurpassed in its ability to modulate biological interactions. Since their discovery, chemists have been fascinated by photosensitive molecules capable of switching between isomeric forms, known as photoswitches. Photoswitchable peptides have been recognized for many years; however, their functional implementation in biological systems has only recently been achieved. Peptides are now acknowledged as excellent protein-protein interaction modulators and have been important in the emergence of photopharmacology. In this review, we briefly explain the different classes of photoswitches and summarize structural studies when they are incorporated into peptides. Importantly, we provide a detailed overview of the rapidly increasing number of examples, where biological modulation is driven by the structural changes. Furthermore, we discuss some of the remaining challenges faced in this field. These exciting proof-of-principle studies highlight the tremendous potential of photocontrollable peptides as optochemical tools for chemical biology and biomedicine.
Collapse
Affiliation(s)
- Lea Albert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | |
Collapse
|
11
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
12
|
Fetissov SO, Legrand R, Lucas N. Bacterial Protein Mimetic of Peptide Hormone as a New Class of Protein- based Drugs. Curr Med Chem 2019; 26:546-553. [PMID: 28982315 DOI: 10.2174/0929867324666171005110620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/07/2017] [Accepted: 08/27/2017] [Indexed: 01/19/2023]
Abstract
Specific peptide molecules classified as hormones, neuropeptides and cytokines are involved in intercellular signaling regulating various physiological processes in all organs and tissues. This justifies the peptidergic signaling as an attractive pharmacological target. Recently, a protein mimetic of a peptide hormone has been identified in Escherichia coli suggesting the potential use of specific bacterial proteins as a new type of peptide-like drugs. We review the scientific rational and technological approaches leading to the identification of the E. coli caseinolytic protease B (ClpB) homologue protein as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), a melanocortin peptide critically involved in the regulation of energy homeostasis in humans and animals. Theoretical and experimental backgrounds for the validation of bacterial ClpB as a potential drug are discussed based on the known E. coli ClpB amino acid sequence homology with α-MSH. Using in silico analysis, we show that other protein sources containing similar to E. coli ClpB α-MSH-like epitopes with potential biological activity may exist in Enterobacteriaceae and in some Brassicaceae. Thus, the original approach leading to the identification of E. coli ClpB as an α-MSH mimetic protein can be applied for the identification of mimetic proteins of other peptide hormones and development of a new type of peptide-like protein-based drugs.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Inserm UMR1239, 25 rue Lucien Tesniere, 76130, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Rouen, 76000, France
| | | | | |
Collapse
|
13
|
Silanteva IA, Komolkin AV, Morozova EA, Vorontsov-Velyaminov PN, Kasyanenko NA. Role of Mono- and Divalent Ions in Peptide Glu-Asp-Arg-DNA Interaction. J Phys Chem B 2019; 123:1896-1902. [PMID: 30762356 DOI: 10.1021/acs.jpcb.8b10359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of the regulatory biologically active peptide Glu-Asp-Arg (EDR) with DNA is considered by spectral, NMR, viscosimetry, and molecular dynamics methods. It was shown that EDR can partly penetrate into the major groove of DNA and affect the base atoms, mainly the N7 and O6 of guanine. It was observed that Mg2+ ions can promote DNA-EDR interaction due to their effective screening of the negatively charged phosphate groups of DNA. This action of Mg2+ remains in salted solution as well.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics , Saint Petersburg State University , 7-9 Universitetskaya embankment , Saint Petersburg 199034 , Russia
| | - Andrei V Komolkin
- Faculty of Physics , Saint Petersburg State University , 7-9 Universitetskaya embankment , Saint Petersburg 199034 , Russia
| | - Ekaterina A Morozova
- Faculty of Physics , Saint Petersburg State University , 7-9 Universitetskaya embankment , Saint Petersburg 199034 , Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics , Saint Petersburg State University , 7-9 Universitetskaya embankment , Saint Petersburg 199034 , Russia
| | - Nina A Kasyanenko
- Faculty of Physics , Saint Petersburg State University , 7-9 Universitetskaya embankment , Saint Petersburg 199034 , Russia
| |
Collapse
|
14
|
Vaeroy H, Schneider F, Fetissov SO. Neurobiology of Aggressive Behavior-Role of Autoantibodies Reactive With Stress-Related Peptide Hormones. Front Psychiatry 2019; 10:872. [PMID: 31866881 PMCID: PMC6904880 DOI: 10.3389/fpsyt.2019.00872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Adrenocorticotropic hormone together with arginine vasopressin and oxytocin, the neuropeptides regulating the stress response and the hypothalamic-pituitary-adrenal axis activity, are known to modulate aggressive behavior. The functional role of the adrenocorticotropic hormone immunoglobulin G autoantibodies in peptidergic signaling and motivated behavior, including aggression, has been shown in experimental and in vitro models. This review summarizes some experimental data implicating autoantibodies reactive with stress-related peptides in aggressive behavior.
Collapse
Affiliation(s)
- Henning Vaeroy
- Department of Psychiatric Research, Akershus University Hospital, Nordbyhagen, Norway
| | - Frida Schneider
- Department of Psychiatric Research, Akershus University Hospital, Nordbyhagen, Norway
| | - Sergueï O Fetissov
- Inserm UMR1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Rouen Normandy, Rouen, France
| |
Collapse
|
15
|
Penetration of the blood-brain barrier by peripheral neuropeptides: new approaches to enhancing transport and endogenous expression. Cell Tissue Res 2018; 375:287-293. [PMID: 30535799 DOI: 10.1007/s00441-018-2959-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier between the interstitial fluid of the brain and the blood; the barrier maintains the precisely controlled biochemical environment that is necessary for neural function. This constellation of endothelial cells, macrophages, pericytes, and astrocytes forms the neurovascular unit which is the structural and functional unit of the blood-brain barrier. Peptides enter and exit the CNS by transport systems expressed by the capillary endothelial cells of the neurovascular unit. Limiting the transport of peptides and proteins into the brain are efflux transporters like P-gp are transmembrane proteins present on the luminal side of the cerebral capillary endothelium and their function is to promote transit and excretion of drugs from the brain to the blood. Nanocarrier systems have been developed to exploit transport systems for enhanced BBB transport. Recent approaches for enhancing endogenous peptide expression are discussed.
Collapse
|
16
|
Machelska H, Celik MÖ. Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 2018; 9:1388. [PMID: 30555325 PMCID: PMC6282113 DOI: 10.3389/fphar.2018.01388] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Liu X, Zhao L, Wang Y, Zhou J, Wang D, Zhang Y, Zhang X, Wang Z, Yang D, Mou L, Wang R. MEL-N16: A Series of Novel Endomorphin Analogs with Good Analgesic Activity and a Favorable Side Effect Profile. ACS Chem Neurosci 2017; 8:2180-2193. [PMID: 28732166 DOI: 10.1021/acschemneuro.7b00097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are neuromodulators that bind to opioid receptors and reduce pain sensitivity. Endomorphins are among the most active endogenous opioid peptides, and they have good affinity and selectivity toward the μ opioid receptor. However, their clinical usage is hindered by their inability to cross the blood-brain barrier and their poor in vivo activity after peripheral injection. In order to overcome these defects, we have designed and synthesized a series of novel endomorphin analogs with multiple site modifications. Radioligand binding, cAMP accumulation, and β-arrestin-2 recruitment assays were employed to determine the activity of synthesized endomorphin analogs toward opioid receptors. The blood-brain barrier permeability and antinociceptive effect of these analogs were determined in several rodent models of acute and persistent pain. In addition, the side effects of the analogs were examined. The radioligand binding assay and functional activity examination indicated that the MEL-N16 series of compounds were more active agonists against μ opioid receptor than were the parent peptides. Notably, the analogs displayed biased downstream signaling toward G-protein pathways over β-arrestin-2 recruitment. The analogs showed highly potent antinociceptive effects in the tested nociceptive models. In comparison with endomorphins, the synthesized analogs were better able to penetrate the blood-brain barrier and exerted their pain regulatory activity in the central nervous system after peripheral injection. These analogs also have lower tendency to cause side effects than morphine does at similar or equal antinociceptive doses. The MEL-N16 compounds have highly potent and efficacious analgesic effects in various pain models with a favorable side effect profile.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Long Zhao
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingjing Zhou
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dan Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yixin Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xianghui Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dongxu Yang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lingyun Mou
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, Department of Pharmacology,
Institute of Biochemistry and Molecular Biology, School of Basic Medical
Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
19
|
Wu H, Lin F, Chen H, Liu J, Gao Y, Zhang X, Hao J, Chen D, Yuan D, Wang T, Li Z. Ya-fish (Schizothorax prenanti) spexin: identification, tissue distribution and mRNA expression responses to periprandial and fasting. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:39-49. [PMID: 26311351 DOI: 10.1007/s10695-015-0115-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Spexin (SPX) is a novel peptide which was known for its role in physiological homeostasis. A recent study has confirmed that SPX plays an important role in the feeding regulation. However, the reports about SPX are very limited. In the present study, we characterized the structure, distribution and mRNA expression responses to feeding status of SPX in Ya-fish (Schizothorax prenanti). The full-length cDNA of Ya-fish SPX was 1330 base pairs (bp), which encoded 106 amino acid residues. These residues contained a 31-amino acid signal peptide region and a 14-amino acid mature peptide. The sequence alignment demonstrated that the Ya-fish SPX showed high conservation with other species. Our data revealed that SPX was widely expressed in all test tissues. The highest expression of SPX mRNA was observed in Ya-fish forebrain. Compared with the Ya-fish SPX mRNA expression in the forebrain between the preprandial and postprandial groups, the fed group was prominently increased than unfed groups after a meal, while the unfed group at 1 and 3 h substantially decreased than preprandial groups (P < 0.01). In addition, SPX mRNA expression in forebrain was significantly decreased (P < 0.01) during fasting for a week and sharply increased (P < 0.01) after refeeding on the 7th day, and then return to normal level on the 9th day. These results point toward that SPX mRNA expression is regulated by metabolic status or feeding conditions in Ya-fish.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, China
| | - Fangjun Lin
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ju Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Dengyue Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Tao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China.
| |
Collapse
|
20
|
Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016; 76:30-44. [PMID: 26617077 DOI: 10.1016/j.peptides.2015.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023]
Abstract
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.
Collapse
Affiliation(s)
- Lakshmi A Dave
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Carlos A Montoya
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| | - Paul J Moughan
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
Fond G, Chevalier G, Eberl G, Leboyer M. [The potential role of microbiota in major psychiatric disorders: Mechanisms, preclinical data, gastro-intestinal comorbidities and therapeutic options]. Presse Med 2015; 45:7-19. [PMID: 26653939 DOI: 10.1016/j.lpm.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/10/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
While forecasts predict an increase in the prevalence of mental health disorders in the worldwide general population, the response rate to classical psychiatric treatment remains unsatisfactory. Resistance to psychotropic drugs can be due to clinical, pharmacological, pharmacokinetic, and pharmacodynamic factors. Among these factors, recent animal findings suggest that microbiota may have an underestimated influence on its host's behavior and on drug metabolism that may explain ineffectiveness or increased side effects of psychiatric medications such as weight gain. The following issues were identified in the present review: (i) microbiota dysbiosis and putative consequences on central nervous system functioning; (ii) chronic microbiota dysbiosis-associated illnesses in humans; (iii) microbiota-oriented treatments and their potential therapeutic applications in psychiatry.
Collapse
Affiliation(s)
- Guillaume Fond
- Inserm U955, équipe 15, université Paris-Est, fondation FondaMental, fondation de coopération scientifique, AP-HP, groupe hospitalo-universitaire Mondor, DHU Pe-Psy, hôpital A.-Chenevier, pôle de psychiatrie et d'addictologie, pavillon Hartmann, 40, rue de Mesly, 94000 Créteil, France.
| | - Grégoire Chevalier
- Institut Pasteur, unité de développement du tissu lymphoïde, 25, rue du Dr-Roux, 75724 Paris, France
| | - Gerard Eberl
- Institut Pasteur, unité de développement du tissu lymphoïde, 25, rue du Dr-Roux, 75724 Paris, France
| | - Marion Leboyer
- Inserm U955, équipe 15, université Paris-Est, fondation FondaMental, fondation de coopération scientifique, AP-HP, groupe hospitalo-universitaire Mondor, DHU Pe-Psy, hôpital A.-Chenevier, pôle de psychiatrie et d'addictologie, pavillon Hartmann, 40, rue de Mesly, 94000 Créteil, France
| |
Collapse
|
22
|
Pan W. From blood to brain through BBB and astrocytic signaling. Peptides 2015; 72:121-7. [PMID: 26111490 DOI: 10.1016/j.peptides.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
In this Festschrift, I discuss the career and guiding principles to which Abba J. Kastin has adhered during the last 20 years we worked together. I briefly describe the history of our joint laboratory group, the context of studies of peptide permeation across the blood-brain barrier (BBB), and newer developments in the BBB Group as Abba steps down after serving 35 years as the founding Editor-in-Chief for Peptides. Abba's BBB studies on peptides have contributed to concepts in the neuroendocrinology of feeding and developed information on molecular trafficking across BBB cells. The astroglial leptin signaling studies and the interactions of sleep and BBB are two major directions, whereas the long-term MIF-1 project demarcates a tortuous road on translational research.
Collapse
Affiliation(s)
- Weihong Pan
- Biopotentials Sleep Center, Baton Rouge, LA 70809, USA.
| |
Collapse
|
23
|
Pan W. Festschrift to highlight the career of Abba J. Kastin as a founding editor, researcher, and educator in the peptide field. Preface. Peptides 2015; 72:1-3. [PMID: 26275336 DOI: 10.1016/j.peptides.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Pan
- Biopotentials Sleep Center, Baton Rouge, LA 70809, USA.
| |
Collapse
|
24
|
Wang Y, Liu X, Wang D, Yang J, Zhao L, Yu J, Wang R. Endomorphin-1 analogues (MELs) penetrate the blood–brain barrier and exhibit good analgesic effects with minimal side effects. Neuropharmacology 2015; 97:312-21. [DOI: 10.1016/j.neuropharm.2015.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
|
25
|
Schally AV. Endocrine approaches to treatment of Alzheimer's disease and other neurological conditions: Part I: Some recollections of my association with Dr. Abba Kastin: A tale of successful collaboration. Peptides 2015; 72:154-63. [PMID: 25843023 DOI: 10.1016/j.peptides.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Andrew V Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, United States; Division of Hematology/Oncology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
26
|
Yoshikawa M. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides 2015; 72:208-25. [PMID: 26297549 DOI: 10.1016/j.peptides.2015.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified.
Collapse
|
27
|
Hendricks NG, Julian RR. Characterizing gaseous peptide structure with action-EET and simulated annealing. Phys Chem Chem Phys 2015; 17:25822-7. [DOI: 10.1039/c5cp01617g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Distance-sensitive energy transfer and molecular dynamics are used to generate experimentally corroborated structures for peptides in the gas phase.
Collapse
Affiliation(s)
| | - Ryan R. Julian
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
28
|
Fond G, Boukouaci W, Chevalier G, Regnault A, Eberl G, Hamdani N, Dickerson F, Macgregor A, Boyer L, Dargel A, Oliveira J, Tamouza R, Leboyer M. The "psychomicrobiotic": Targeting microbiota in major psychiatric disorders: A systematic review. ACTA ACUST UNITED AC 2014; 63:35-42. [PMID: 25468489 DOI: 10.1016/j.patbio.2014.10.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/20/2014] [Indexed: 12/19/2022]
Abstract
The gut microbiota is increasingly considered as a symbiotic partner in the maintenance of good health. Metagenomic approaches could help to discover how the complex gut microbial ecosystem participates in the control of the host's brain development and function, and could be relevant for future therapeutic developments, such as probiotics, prebiotics and nutritional approaches for psychiatric disorders. Previous reviews focused on the effects of microbiota on the central nervous system in in vitro and animal studies. The aim of the present review is to synthetize the current data on the association between microbiota dysbiosis and onset and/or maintenance of major psychiatric disorders, and to explore potential therapeutic opportunities targeting microbiota dysbiosis in psychiatric patients.
Collapse
Affiliation(s)
- G Fond
- Inserm U955, FondaMental Foundation, Paris-Est university, Chenevier Hospital, AP-HP, GHU Mondor, DHU Pe-Psy, Pavillon Hartmann, 40, rue Mesly, 94000 Créteil, France.
| | - W Boukouaci
- Jean-Dausset Laboratory & Inserm, UMRS 940, Saint-Louis hospital, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - G Chevalier
- Unité de développement du tissu lymphoïde, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, France
| | - A Regnault
- Inserm, Institut Pasteur, aviesan/institut multi-organismes immunologie, hématologie et pneumologie (ITMO IHP), bâtiment Biopark, 8, rue de la Croix Jarry 1(er) étage, 75013 Paris, France
| | - G Eberl
- Unité de développement du tissu lymphoïde, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, France
| | - N Hamdani
- Inserm U955, FondaMental Foundation, Paris-Est university, Chenevier Hospital, AP-HP, GHU Mondor, DHU Pe-Psy, Pavillon Hartmann, 40, rue Mesly, 94000 Créteil, France
| | - F Dickerson
- Stanley Research Program, Sheppard Pratt Health System, 6501N, Charles Street, MD 21204 Baltimore, United States
| | - A Macgregor
- Inserm U1061, academic adult psychiatry department, Montpellier 1 university, La Colombière hospital, Montpellier CHRU, 191, avenue du doyen Gaston-Giraud, 34295 Montpellier cedex, France
| | - L Boyer
- EA 3279-Self-perceived Health Assessment Research Unit, School of Medicine, La Timone University, 27, boulevard Jean-Moulin, 13385 Marseille cedex 05, France
| | - A Dargel
- Inserm U955, FondaMental Foundation, Paris-Est university, Chenevier Hospital, AP-HP, GHU Mondor, DHU Pe-Psy, Pavillon Hartmann, 40, rue Mesly, 94000 Créteil, France
| | - J Oliveira
- Jean-Dausset Laboratory & Inserm, UMRS 940, Saint-Louis hospital, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - R Tamouza
- Jean-Dausset Laboratory & Inserm, UMRS 940, Saint-Louis hospital, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - M Leboyer
- Inserm U955, FondaMental Foundation, Paris-Est university, Chenevier Hospital, AP-HP, GHU Mondor, DHU Pe-Psy, Pavillon Hartmann, 40, rue Mesly, 94000 Créteil, France
| |
Collapse
|
29
|
Hsuchou H, Jayaram B, Kastin AJ, Wang Y, Ouyang S, Pan W. Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake. J Cell Physiol 2013; 228:1610-6. [PMID: 23359322 DOI: 10.1002/jcp.24325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022]
Abstract
Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice after intravenous bolus injection of (125) I-leptin and the reference substance (131) I-albumin. The degradation pattern of (125) I-leptin in serum and brain homogenates at different time points between 10 and 60 min was measured by HPLC and acid precipitation. Although ELKO mice had reduced uptake of (125) I-leptin uptake by the brain and several peripheral organs, leptin was more stable in blood and tissue. There was no change in the rate of renal excretion. ELISA showed that serum soluble leptin receptor, known to antagonize leptin transport, had a 400-fold increase, probably contributing to the hyperleptinemia and reduced tissue uptake. Thus, the ELKO mutation unexpectedly increased the stability of leptin but suppressed its tissue uptake. These changes probably contribute to the known partial resistance of the ELKO mice to diet-induced obesity.
Collapse
Affiliation(s)
- Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mishra PK, Hsuchou H, Ouyang S, Kastin AJ, Wu X, Pan W. Loss of astrocytic leptin signaling worsens experimental autoimmune encephalomyelitis. Brain Behav Immun 2013; 34:98-107. [PMID: 23916894 PMCID: PMC3818286 DOI: 10.1016/j.bbi.2013.07.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 11/30/2022] Open
Abstract
Leptin is commonly thought to play a detrimental role in exacerbating experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis. Paradoxically, we show here that astrocytic leptin signaling has beneficial effects in reducing disease severity. In the astrocyte specific leptin receptor knockout (ALKO) mouse in which leptin signaling is absent in astrocytes, there were higher EAE scores (more locomotor deficits) than in the wildtype counterparts. The difference mainly occurred at a late stage of EAE when wildtype mice showed signs of recovery whereas ALKO mice continued to deteriorate. The more severe symptoms in ALKO mice coincided with more infiltrating cells in the spinal cord and perivascular brain parenchyma, more demyelination, more infiltrating CD4 cells, and a lower percent of neutrophils in the spinal cord 28 days after EAE induction. Cultured astrocytes from wildtype mice showed increased adenosine release in response to interleukin-6 and the hippocampus of wildtype mice had increased adenosine production 28 days after EAE induction, but the ALKO mutation abolished the increase in both conditions. This indicates a role of astrocytic leptin in normal gliotransmitter release and astrocyte functions. The worsening of EAE in the ALKO mice in the late stage suggests that astrocytic leptin signaling helps to clear infiltrating leukocytes and reduce autoimmune destruction of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihong Pan
- Corresponding author: Weihong Pan, MD, PhD, Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Tel. 225-763-2715; Fax 225-763-0261,
| |
Collapse
|
31
|
Coquerel Q, Sinno MH, Boukhettala N, Coëffier M, Terashi M, Bole-Feysot C, Breuillé D, Déchelotte P, Fetissov SO. Intestinal inflammation influences α-MSH reactive autoantibodies: relevance to food intake and body weight. Psychoneuroendocrinology 2012; 37:94-106. [PMID: 21641724 DOI: 10.1016/j.psyneuen.2011.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 02/08/2023]
Abstract
Autoantibodies reacting with alpha-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are involved in regulation of feeding. In this work we studied if intestinal inflammation (mucositis) may influence α-MSH autoantibodies production relevant to food intake and body weight. Mucositis and anorexia were produced in Sprague-Dawley rats by methotrexate (MTX, 2.5mg/kg/day, for three days, subcutaneously). Plasma levels of total IgG and of α-MSH autoantibodies were measured during and after MTX-induced mucositis and were compared with pair-fed and ad libitum-fed controls. Effects of intraperitoneal injections of rabbit anti-α-MSH IgG (3 or 10 μg/day/rat) on MTX-induced anorexia and on plasma α-MSH peptide concentration were separately studied. Here we show that in MTX rats, intestinal mucositis and anorexia were accompanied by decreased plasma levels of both total IgG and of α-MSH autoantibodies while refeeding was characterized by their elevated levels. In spite of similar food intake in MTX and pair-fed rats, recovery of body weight was delayed by at least 1 week in the MTX group. During refeeding and body weight deficit in MTX rats, α-MSH IgG autoantibody levels correlated negatively with food to water intake ratios. Injections of anti-α-MSH IgG induced a dose-dependent attenuation of food intake and body weight regain in MTX-treated rats accompanied by increased concentrations of α-MSH peptide which correlated positively with plasma levels of α-MSH autoantibodies. These data show that intestinal inflammation, independently from food restriction, affects general humoral immune response which may influence food intake and body weight control via modulation of α-MSH plasma concentration by α-MSH reactive autoantibodies.
Collapse
Affiliation(s)
- Quentin Coquerel
- Digestive System & Nutrition Laboratory (ADEN EA4311), Institute of Medical Research and Innovation, Rouen University, IFR23, Rouen 76183, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. Relaxin-3 systems in the brain—The first 10 years. J Chem Neuroanat 2011; 42:262-75. [DOI: 10.1016/j.jchemneu.2011.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/24/2011] [Accepted: 05/29/2011] [Indexed: 12/25/2022]
|
33
|
Abstract
PURPOSE OF REVIEW Although the cause of most neuropsychiatric disorders remains uncertain, new data offer alternative explanations warranting further validations. This review summarizes some recent findings that may localize the origin of eating disorders as well as some other neuropsychiatric disorders outside the brain and discuss their cause as a possible dysfunction of the gut-brain axis involving the humoral immune system. RECENT FINDINGS The gut microbiota has been identified as the main source of highest biological variability confined in an individual and also provides constant antigenic stimulation shaping up the physiological immune response. Furthermore, molecular mimicry has been shown among microbial proteins including gut microbiota and several key neuropeptides involved in the regulation of motivated behavior and emotion. Immunoglobulins reactive with these neuropeptides have been identified in humans, and their levels or affinities were associated with neuropsychiatric conditions including anxiety, depression, eating and sleep disorders. SUMMARY Cross-reacting immunoglobulins may bind both microbial sequences and neuropeptides, thereby constituting a particular way of signaling between the gut and the brain. Alteration of this link may contribute to several neuropsychiatric disorders, emphasizing the key role of nutrition among other factors influencing gut content and intestinal permeability.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Digestive System and Nutrition Laboratory (ADEN EA4311), Institute for Medical Research and Innovation, IFRMP23, Rouen University Hospital, Rouen University, Rouen, France.
| | | |
Collapse
|
34
|
Schäble S, Topic B, Buddenberg T, Petri D, Huston JP, de Souza Silva MA. Neurokinin3-R agonism in aged rats has anxiolytic-, antidepressant-, and promnestic-like effects and stimulates ACh release in frontal cortex, amygdala and hippocampus. Eur Neuropsychopharmacol 2011; 21:484-94. [PMID: 21342754 DOI: 10.1016/j.euroneuro.2010.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/24/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
Neurokinin-3 receptors (NK(3)-R) are localized in brain regions which have been implicated in processes governing learning and memory as well as emotionality. The effects of acute subcutaneous (s.c.) senktide (0.2 and 0.4 mg/kg), a NK(3)-R agonist, were tested in aged (23-25 month old) Wistar rats: (a) in an episodic-like memory test, using an object discrimination task (this is the first study to test for deficits in episodic-like memory in aged rats, since appropriate tests have only recently became available); (b) on parameters of anxiety in an open field test, (c) on indices of depression in the forced swimming test and (d) on the activity of cholinergic neurons of the basal forebrain, using in vivo microdialysis and HPLC. Neither the saline-, nor senktide-treated aged animals, exhibited episodic-like memory. However, the senktide-, but not the vehicle-treated group, exhibited object memory for spatial displacement, a component of episodic memory. Senktide injection also had anxiolytic- and antidepressant-like effects. Furthermore, the active doses of senktide on behavior increased ACh levels in the frontal cortex, amygdala and hippocampus, suggesting a relationship between its cholinergic and behavioral actions. The results indicate cholinergic modulation by the NK(3)-R in conjunction with a role in the processing of memory and emotional responses in the aged rat.
Collapse
Affiliation(s)
- S Schäble
- Center for Behavioral Neuroscience, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|