1
|
Wang X, Chen J, Ni H, Mustafa G, Yang Y, Wang Q, Fu H, Zhang L, Yang B. Use Chou's 5-steps rule to identify protein post-translational modification and its linkage to secondary metabolism during the floral development of Lonicera japonica Thunb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1035-1048. [PMID: 34600181 DOI: 10.1016/j.plaphy.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Lonicera japonica Thunb. is widely used in traditional medicine systems of East Asian and attracts a large amount of studies on the biosynthesis of its active components. Currently, there is little understanding regarding the regulatory mechanisms behind the accumulation of secondary metabolites during its developmental stages. In this study, published transcriptomic and proteomic data were mined to evaluate potential linkage between protein modification and secondary metabolism during the floral development. Stronger correlations were observed between differentially expressed genes (DEGs) and their corresponding differentially abundant proteins (DAPs) in the comparison of juvenile bud stage (JBS)/third green stage (TGS) vs. silver flowering stage (SFS). Seventy-five and 76 cor-rDEGs and cor-rDAPs (CDDs) showed opposite trends at both transcriptional and translational levels when comparing their levels at JBS and TGS relative to those at SFS. CDDs were mainly involved in elements belonging to the protein metabolism and the TCA cycle. Protein-protein interaction analysis indicated that the interacting proteins in the major cluster were primarily involved in TCA cycle and protein metabolism. In the simple phenylpropanoids biosynthetic pathway of SFS, both phospho-2-dehydro-3-deoxyheptonate aldolase (PDA) and glutamate/aspartate-prephenate aminotransferase (AAT) were decreased at the protein level, but increased at the gene level. A confirmatory experiment indicated that protein ubiquitination and succinylation were more prominent during the early floral developmental stages, in correlation with simple phenylpropanoids accumulation. Taken together, those data indicates that phenylpropanoids metabolism and floral development are putatively regulated through the ubiquitination and succinylation modifications of PDA, AAT, and TCA cycle proteins in L. japonica.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haofu Ni
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yuling Yang
- Wenshan Academy of Agricultural Sciences, Wenshan, 663000, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Affiliation(s)
- Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops College of Life Science Shanghai University, 200444, Shanghai, China
| |
Collapse
|
3
|
Chou KC. RETRACTED ARTICLE: An insightful 20-year recollection since the birth of pseudo amino acid components. Amino Acids 2020; 52:847. [PMID: 32072298 DOI: 10.1007/s00726-020-02828-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/07/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA, 02478, USA.
| |
Collapse
|
4
|
Wang S, Wang Y, Yu C, Cao Y, Yu Y, Pan Y, Su D, Lu Q, Yang W, Zuo Y, Yang L. Characterization of the relationship between FLI1 and immune infiltrate level in tumour immune microenvironment for breast cancer. J Cell Mol Med 2020; 24:5501-5514. [PMID: 32249526 PMCID: PMC7214163 DOI: 10.1111/jcmm.15205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/31/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer and the leading cause of cancer death among women in the world. Tumour‐infiltrating lymphocytes were defined as the white blood cells left in the vasculature and localized in tumours. Recently, tumour‐infiltrating lymphocytes were found to be associated with good prognosis and response to immunotherapy in tumours. In this study, to examine the influence of FLI1 in immune system in breast cancer, we interrogated the relationship between the FLI1 expression levels with infiltration levels of 28 immune cell types. By splitting the breast cancer samples into high and low expression FLI1 subtypes, we found that the high expression FLI1 subtype was enriched in many immune cell types, and the up‐regulated differentially expressed genes between them were enriched in immune system processes, immune‐related KEGG pathways and biological processes. In addition, many important immune‐related features were found to be positively correlated with the FLI1 expression level. Furthermore, we found that the FLI1 was correlated with the immune‐related genes. Our findings may provide useful help for recognizing the relationship between tumour immune microenvironment and FLI1, and may unravel clinical outcomes and immunotherapy utility for FLI1 in breast cancer.
Collapse
Affiliation(s)
- Shiyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yakun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunlu Yu
- Public Health College, Harbin Medical University, Harbin, China
| | - Yiyin Cao
- Public Health College, Harbin Medical University, Harbin, China
| | - Yao Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yi Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dongqing Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qianzi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wuritu Yang
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|