1
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
2
|
Chen L, Hou Y, Du D, Cui Y, Nie H, Ding Y. MiR-199a-3p in mouse bone marrow mesenchymal stem cell exosomes increases epithelial sodium channel expression in lung injury. Fundam Clin Pharmacol 2022; 36:1011-1019. [PMID: 35667855 DOI: 10.1111/fcp.12807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
Acute lung injury (ALI) causes significant morbidity and mortality in critically ill patients, which often presents with extensive accumulation of activated inflammatory cells and diffused alveolar damage accompanied by oxidative stress. Exosomes are nanovesicles, which have notable anti-inflammatory and repair properties, thus alleviating the symptoms of ALI. Epithelial sodium channel (ENaC) is essential for the transepithelial absorption of Na+ and fluid from alveolar spaces. We studied the effects of bone marrow mesenchymal stem cell exosomes (BMSC-exo) on the apoptosis and protein expression of ENaC in primary mouse alveolar epithelial type 2 cells (AT 2 cells). Moreover, the change of miR-199a-3p in AT 2 cells was detected by qRT-PCR, and we studied the regulation of miR-199a-3p on ENaC protein expression. Our results demonstrated that BMSC-exo could not only improve viability and reduce apoptosis in AT 2 cells, but also enhance the expression of ENaC protein and miR-199a-3p. Meanwhile, the upregulation of miR-199a-3p resulted in increased expression of ENaC protein. In summary, the BMSC-exo could participate in the regulation of ENaC through miR-199a-3p originated from BMSC-exo, thereby providing a new pharmacological tool for the treatment of ALI.
Collapse
Affiliation(s)
- Lei Chen
- China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Danni Du
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Hua Y, Han A, Yu T, Hou Y, Ding Y, Nie H. Small Extracellular Vesicles Containing miR-34c Derived from Bone Marrow Mesenchymal Stem Cells Regulates Epithelial Sodium Channel via Targeting MARCKS. Int J Mol Sci 2022; 23:ijms23095196. [PMID: 35563590 PMCID: PMC9101277 DOI: 10.3390/ijms23095196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Epithelial sodium channel (ENaC) is a pivotal regulator of alveolar fluid clearance in the airway epithelium and plays a key role in the treatment of acute lung injury (ALI), which is mainly composed of the three homologous subunits (α, β and γ). The mechanisms of microRNAs in small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC-sEVs) on the regulation of lung ion transport are seldom reported. In this study, we aimed at investigating whether miR-34c had an effect on ENaC dysfunction induced by lipopolysaccharide and explored the underlying mechanism in this process. Primarily, the effect of miR-34c on lung edema and histopathology changes in an ALI mouse model was investigated. Then the uptake of PKH26-labeled sEVs was observed in recipient cells, and we observed that the overexpression of miR-34c in MSC-sEVs could upregulate the LPS-inhibited γ-ENaC expression. The dual luciferase reporter gene assay demonstrated that myristoylated alanine-rich C kinase substrate (MARCKS) was one of target genes of miR-34c, the protein expression of which was negatively correlated with miR-34c. Subsequently, either upregulating miR-34c or knocking down MARCKS could increase the protein expression of phospho-phosphatidylinositol 3-kinase (p-PI3K) and phospho-protein kinase B (p-AKT), implying a downstream regulation pathway was involved. All of the above suggest that miR-34c in MSC-sEVs can attenuate edematous lung injury via enhancing γ-ENaC expression, at least partially, through targeting MARCKS and activating the PI3K/AKT signaling pathway subsequently.
Collapse
|
4
|
Hou Y, Li J, Ding Y, Cui Y, Nie H. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114654. [PMID: 34537283 DOI: 10.1016/j.jep.2021.114654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (Lut) was recently identified as the major active ingredient of Mosla scabra, which was a typical representative traditional Chinese medicine and had been used to treat pulmonary diseases for thousands of years. AIM OF THE STUDY This study was to explore the effects and relative mechanisms of Lut in LPS-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS). The main characteristic of ALI/ARDS is pulmonary edema, and epithelial sodium channel (ENaC) is a key factor in effective removal of excessive alveolar edematous fluid, which is essential for repairing gas exchange and minimizing damage to the peripheral tissues. However, whether the therapeutic effects of Lut on respiratory diseases are relative with ENaC is still unknown. MATERIALS AND METHODS Alveolar fluid clearance was calculated in BALB/c mice and ENaC function was measured in H441 cells. Moreover, ENaC membrane protein and mRNA were detected by Western blot and real-time PCR, respectively. We also studied the involvement of cGMP/PI3K pathway during the regulation of Lut on ENaC during LPS-induced ALI/ARDS by ELISA method and applying cGMP/PI3K inhibitors/siRNA. RESULTS The beneficial effects of Lut in ALI/ARDS were evidenced by the alleviation of pulmonary edema, and enhancement of both amiloride-sensitive alveolar fluid clearance and short-circuit currents. Lut could alleviate the LPS decreased expression levels of ENaC mRNA and membrane protein in H441 cells and mouse lung. In addition, cGMP concentration was increased after the administration of Lut in ALI/ARDS mice, while the inhibition of cGMP/PI3K pathway could abrogate the enhanced AFC and ENaC protein expression of Lut. CONCLUSION These results implied that Lut could attenuate pulmonary edema via enhancing the abundance of membrane ENaC at least partially through the cGMP/PI3K pathway, which could provide a promising therapeutic strategy for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Hou Y, Ding Y, Du D, Yu T, Zhou W, Cui Y, Nie H. Airway Basal Cells Mediate Hypoxia-Induced EMT by Increasing Ribosome Biogenesis. Front Pharmacol 2021; 12:783946. [PMID: 34955855 PMCID: PMC8696177 DOI: 10.3389/fphar.2021.783946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
Excessive secretion of airway mucus and fluid accumulation are the common features of many respiratory diseases, which, in turn, induce cell hypoxia in the airway epithelium, resulting in epithelial–mesenchymal transition (EMT) and ultimately fibrosis. However, the mechanisms of EMT induced by hypoxia in the airway are currently unclear. To mimic the status of edematous fluid retention in the airway, we cultured primary mouse tracheal epithelial cells (MTECs) in a liquid–liquid interface (LLI) mode after full differentiation in a classic air–liquid interface (ALI) culture system. The cell hypoxia was verified by the physical characteristics and lactate production in cultured medium as well as HIF expression in MTECs cultured by LLI mode. EMT was evidenced and mainly mediated by basal cells, supported by flow cytometry and immunofluorescence assay. The differently expressed genes of basal and other airway epithelial cells were found to be enriched in the ribosome by our analysis of an MTEC single-cell RNA sequencing data set and Myc, the global regulator of ribosome biogenesis was identified to be highly expressed in basal cells. We next separated basal cells from bulk MTECs by flow cytometry, and the real-time PCR results showed that ribosome biogenesis was significantly upregulated in basal cells, whereas the inhibition of ribosome biogenesis alleviated the phosphorylation of the mammalian target of rapamycin/AKT and abrogated hypoxia-induced EMT in MTECs. Collectively, these observations strongly suggest that basal cells in the airway epithelium may mediate the process of hypoxia-induced EMT, partly through enhancing ribosome biogenesis.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Danni Du
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Liu Y, Ding Y, Hou Y, Yu T, Nie H, Cui Y. The miR-130a-3p/TGF-βRII Axis Participates in Inhibiting the Differentiation of Fibroblasts Induced by TGF-β1. Front Pharmacol 2021; 12:732540. [PMID: 34393805 PMCID: PMC8355625 DOI: 10.3389/fphar.2021.732540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease that has a poor prognosis. Abnormal activation of transforming growth factor-β1 (TGF-β1) plays a crucial role in fibroblast differentiation. Mesenchymal stem cells (MSCs) are currently being considered for the treatment of PF, but the regulatory mechanisms are poorly understood. We co-cultured bone marrow-derived MSCs and mouse lung fibroblasts (MLg) in the presence of TGF-β1, and studied the protein/mRNA expression of fibrosis markers and related signaling pathways. The effects of miR-130a-3p and TGF-β receptor II (TGF-βRII) on the differentiation of MLg induced by TGF-β1 were studied using immunofluorescence assay, Western blot, and quantitative real-time PCR techniques, respectively. Our results showed that MSCs reversed the overexpression of fibrosis markers and TGF-β1/Smad signaling pathway proteins and mRNAs after TGF-β1 treatment and increased the level of miR-130a-3p. TGF-βRII was identified as a target of miR-130a-3p and was evaluated by dual-luciferase reporter assay. The miR-130a-3p/TGF-βRII axis could suppress the differentiation of lung fibroblasts via the TGF-β1/Smad signaling pathway, thereby reducing the process of PF.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Departments of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Bone marrow mesenchymal stem cells derived miRNA-130b enhances epithelial sodium channel by targeting PTEN. Respir Res 2020; 21:329. [PMID: 33308227 PMCID: PMC7731743 DOI: 10.1186/s12931-020-01595-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Aims Acute lung injury (ALI) is a clinical syndrome with high morbidity and mortality, and severe pulmonary edema is one of the characteristics. Epithelial sodium channel (ENaC) located on the apical side of alveolar type 2 epithelial (AT2) cells is the primary rate limiting segment in alveolar fluid clearance. Many preclinical studies have revealed that mesenchymal stem cells (MSCs) based therapy has great therapeutic potential for ALI, while the role of ENaC in this process is rarely known. Methods We studied the effects of bone marrow-derived MSCs (BMSCs) on the protein/mRNA expression and activity of ENaC in primary mouse AT2 and human H441 cells by co-culture with them, respectively. Moreover, the changes of miRNA-130b in AT2 cells were detected by qRT-PCR, and we studied the involvement of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and the downstream PI3K/AKT pathway in the miRNA-130b regulation of ENaC. Results Our results demonstrated that BMSCs could increase ENaC protein expression and function, as well as the expression level of miRNA-130b. The dual luciferase target gene assay verified that PTEN was one of the target genes of miR-130b, which showed adverse effects on the protein expression of α/γ-ENaC and PTEN in AT2 cells. Upregulating miR-130b and/or knocking down PTEN resulted in the increase of α/γ-ENaC protein level, and the protein expression of p-AKT/AKT was enhanced by miR-130b. Both α and γ-ENaC protein expressions were increased after AT2 cells were transfected with siPTEN, which could be reversed by the co-administration of PI3K/AKT inhibitor LY294002. Conclusion In summary, miRNA-130b in BMSCs can enhance ENaC at least partially by targeting PTEN and activating PI3K/AKT pathway, which may provide a promising new direction for therapeutic strategy in ALI.
Collapse
|