1
|
Bezerra BMS, Dantas de Mendonça Y Araujo SE, Cordeiro de Macêdo A, Costa KMN, Sato MR, Oshiro-Junior JA. Potential Application of Cephalosporins Carried in Organic or Inorganic Nanosystems Against Gram-negative Pathogens. Curr Med Chem 2022; 29:5212-5229. [PMID: 35352643 DOI: 10.2174/0929867329666220329201817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Cephalosporins are β-lactam antibiotics, classified into five generations and extensively used in clinical practice against infections caused by Gram-negative pathogens, including Enterobacteriaceae and P. aeruginosa. Commercially, conventional pharmaceutical forms require high doses to ensure clinical efficacy. Additionally, β-lactam resistance mechanisms, such as the production of enzymes (called extended-spectrum β-lactamases) and the low plasma half-life of these antibiotics have been challenging in clinical therapy based on the use of cephalosporins. In this context, its incorporation into nanoparticles, whether organic or inorganic, is an alternative to temporally and spatially control the drug release and improve its pharmacokinetic and pharmacodynamic limitations. Considering this, the present review unites the cephalosporins encapsulated into organic and inorganic nanoparticles against resistant and nonresistant enterobacteria. We divide cephalosporin generation into subtopics in which we discuss all molecules approved by regulatory agencies. In addition, changes in the side chains at positions R1 and R2 of the central structure of cephalosporins for all semisynthetic derivatives developed were discussed and presented, as the changes in these groups are related to modifications in pharmacological and pharmacokinetic properties, respectively. Ultimately, we exhibit the advances and differences in the release profile and in vitro activity of cephalosporins incorporated in different nanoparticles.
Collapse
Affiliation(s)
- Brenda Maria Silva Bezerra
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil
| | - Sara Efigênia Dantas de Mendonça Y Araujo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil
| | - Analara Cordeiro de Macêdo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil
| | - Kammila Martins Nicolau Costa
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil
| | - Mariana Rillo Sato
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Paraíba, Brazil
| | | |
Collapse
|
2
|
de Oliveira MS, Oshiro-Junior JA, Dantas MM, da Fonsêca NF, Ramos HA, da Silva JVB, de Medeiros ACD. An Overview of the Antimicrobial Activity of Polymeric Nanoparticles Against Enterobacteriaceae. Curr Pharm Des 2021; 27:1311-1322. [PMID: 33121399 DOI: 10.2174/1381612826666201029095327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
Bacterial resistance is considered one of the most important public health problems of the century, due to the ability of bacteria to rapidly develop resistance mechanisms, which makes it difficult to treat infections, leading to a high rate of morbidity and mortality. Based on this, several options are being sought as an alternative to currently available treatments, with a particular focus on nanotechnology. Nanomaterials have important potential for use in medical interventions aimed at preventing, diagnosing and treating numerous diseases by directing the delivery of drugs. This review presents data on the use of polymeric nanoparticles having in vitro and in vivo activity against bacteria belonging to the Enterobacteriaceae family.
Collapse
Affiliation(s)
- Maísa Soares de Oliveira
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| | - João Augusto Oshiro-Junior
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| | - Mariana Morais Dantas
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| | - Naara Felipe da Fonsêca
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| | - Hilthon Alves Ramos
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| | - João Victor Belo da Silva
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| | - Ana Claudia Dantas de Medeiros
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58429-500, Campina Grande, Paraiba, Brazil
| |
Collapse
|
3
|
Oshiro-Junior JA, Lusuardi A, Beamud EM, Chiavacci LA, Cuberes MT. Nanostructural Arrangements and Surface Morphology on Ureasil-Polyether Films Loaded with Dexamethasone Acetate. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1362. [PMID: 34064153 PMCID: PMC8224347 DOI: 10.3390/nano11061362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
Ureasil-Poly(ethylene oxide) (ureasil-PEO500) and ureasil-Poly(propylene oxide) (u-PPO400) films, unloaded and loaded with dexamethasone acetate (DMA), have been investigated by carrying out atomic force microscopy (AFM), ultrasonic force microscopy (UFM), contact-angle, and drug release experiments. In addition, X-ray diffraction, small angle X-ray scattering, and infrared spectroscopy have provided essential information to understand the films' structural organization. Our results reveal that while in u-PEO500 DMA occupies sites near the ether oxygen and remains absent from the film surface, in u-PPO400 new crystalline phases are formed when DMA is loaded, which show up as ~30-100 nm in diameter rounded clusters aligned along a well-defined direction, presumably related to the one defined by the characteristic polymer ropes distinguished on the surface of the unloaded u-POP film; occasionally, larger needle-shaped DMA crystals are also observed. UFM reveals that in the unloaded u-PPO matrix the polymer ropes are made up of strands, which in turn consist of aligned ~180 nm in diameter stiffer rounded clusters possibly formed by siloxane-node aggregates; the new crystalline phases may grow in-between the strands when the drug is loaded. The results illustrate the potential of AFM-based procedures, in combination with additional physico-chemical techniques, to picture the nanostructural arrangements in polymer matrices intended for drug delivery.
Collapse
Affiliation(s)
- João Augusto Oshiro-Junior
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Paraíba 58429-600, Brazil
| | - Angelo Lusuardi
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
| | - Elena M. Beamud
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
| | - Leila Aparecida Chiavacci
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Highway Araraquara-Jaú, Araraquara 14800-903, Brazil;
| | - M. Teresa Cuberes
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
| |
Collapse
|
4
|
Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021; 13:pharmaceutics13050675. [PMID: 34066727 PMCID: PMC8151228 DOI: 10.3390/pharmaceutics13050675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a vulvar/vaginal infection that affects approximately 75% of women worldwide. The current treatment consists of antimicrobials with hepatotoxic properties and high drug interaction probabilities. Therefore, this study aimed to develop a new treatment to VVC based on micelles containing curcumin (CUR) dispersed in a ureasil-polyether (U-PEO) hybrid. The physical-chemical characterization was carried out in order to observe size, shape, crystallinity degree and particle dispersion in the formulation and was performed by dynamic light scattering (DLS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and through in vitro release study. The results of DLS and SEM exhibited micelles with 35 nm, and encapsulation efficiency (EE) results demonstrated 100% of EE to CUR dispersed in the U-PEO, which was confirmed by the DRX. The release results showed that CUR loaded in U-PEO is 70% released after 10 days, which demonstrates the potential application of this material in different pharmaceutical forms (ovules and rings), and the possibility of multidose based on a single application, suggesting a higher rate of adherence.
Collapse
|
5
|
Medeiros ACD. Prospecting of Bioactive Compounds. Curr Pharm Des 2020; 26:4031. [DOI: 10.2174/138161282633200820110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|