1
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Abiayi EA, Itelima JU, Onwuliri FC, Abiayi DC, Udechukwu CC, Jolayemi KO, Abiayi DC, Agida G, Forcados G. Effect of single and combination therapy on methanol extracts of Khaya senegalensis stem bark, Vernonia amygdalina leaves and Garcinia kola seed in Leptospira interrogans-infected mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118601. [PMID: 39059686 DOI: 10.1016/j.jep.2024.118601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pastoralists in Nigeria mix Garcinia kola seed (GK), Khaya senegalensis stem bark (KS), and Vernonia amygdalina leaves (VA) to treat leptospirosis. AIM To determine the in vitro and in vivo effect on single and combination therapy on Leptospira interrogans-infected mice. MATERIALS AND METHODS Evaluation of in vitro assay for anti-leptospiral motility of the extracts was carried out in triplicates. For the in vivo assessment, 40 adult male mice inoculated with Leptospira were randomly allocated into 8 groups of 5 mice each. Groups IV-IX were treated with 800 mg/kg b.w. of KS, GK, VA, KS + GK, KS + VA, GK + VA for 5 days. Group I was negative control, II was model control, and III was treated with penicillin (3.7 mg/kg b.w.) intramuscularly. RESULTS In vitro, at 90 min, all the extracts at 800, 400, and 200 mg/ml showed complete cessation of motility which was significantly (p < 0.05) different when compared to the negative control. A significant (p < 0.05) IC50 of 0.18 mg/ml was recorded with GK when compared to KS (0.40 mg/ml), VA (0.25 mg/ml), and procaine penicillin (0.31 mg/ml). Mean packed cell volume, haemoglobin concentration, and mean corpuscular haemoglobin concentration decreased significantly (p < 0.05) in all infected groups and returned to almost pre-infection values. However, significant leucocytosis (p < 0.05) was observed in group II. AST and ALP showed a significant increase (p < 0.001). Histopathological evaluation showed the extracts to prevent the distortion of normal architecture of the selected organs. CONCLUSION This study demonstrates the significant potential of Garcinia kola, Khaya senegalensis, and Vernonia amygdalina extracts singly and in combination to combat leptospirosis.
Collapse
Affiliation(s)
- Elmina Abiba Abiayi
- Leptospira Unit, Microbiology Division, Central Diagnostic Laboratories. National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Janet Uchechukwu Itelima
- Applied Microbiology, Department of Plant Science and Biotechnology, Faculty of Natural Sciences University of Jos, Plateau State, Nigeria.
| | - Festus Chukwuemeka Onwuliri
- Applied Microbiology, Department of Plant Science and Biotechnology, Faculty of Natural Sciences University of Jos, Plateau State, Nigeria.
| | | | | | | | - Daniel Chibuzo Abiayi
- Department of Internal Medicine Jos University Teaching Hospital, Plateau State, Nigeria.
| | - George Agida
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Gilead Forcados
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| |
Collapse
|
3
|
Nazari-Serenjeh M, Baluchnejadmojarad T, Hatami-Morassa M, Fahanik-Babaei J, Mehrabi S, Tashakori-Miyanroudi M, Ramazi S, Mohamadi-Zarch SM, Nourabadi D, Roghani M. Kolaviron neuroprotective effect against okadaic acid-provoked cognitive impairment. Heliyon 2024; 10:e25564. [PMID: 38356522 PMCID: PMC10864987 DOI: 10.1016/j.heliyon.2024.e25564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is acknowledged as the main causative factor of dementia that affects millions of people around the world and is increasing at increasing pace. Okadaic acid (OA) is a toxic compound with ability to inhibit protein phosphatases and to induce tau protein hyperphosphorylation and Alzheimer's-like phenotype. Kolaviron (KV) is a bioflavonoid derived from Garcinia kola seeds with anti-antioxidative and anti-inflammation properties. The main goal of this study was to assess whether kolaviron can exert neuroprotective effect against okadaic acid-induced cognitive deficit. Rats had an intracerebroventricular (ICV) injection of OA and pretreated with KV at 50 or 100 mg/kg and examined for cognition besides histological and biochemical factors. OA group treated with KV at 100 mg/kg had less memory deficit in passive avoidance and novel object discrimination (NOD) tasks besides lower hippocampal levels of caspases 1 and 3, tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) as inflammatory factors, reactive oxygen species (ROS), protein carbonyl, malondialdehyde (MDA), and phosphorylated tau (p-tau) and higher level of acetylcholinesterase (AChE) activity, mitochondrial integrity index, superoxide dismutase (SOD), and glutathione (GSH). Moreover, KV pretreatment at 100 mg/kg attenuated hippocampal CA1 neuronal loss and glial fibrillary acidic protein (GFAP) reactivity as a factor of astrogliosis. In summary, KV was able to attenuate cognitive fall subsequent to ICV OA which is partly mediated through its neuroprotective potential linked to mitigation of tau hyperphosphorylation, apoptosis, pyroptosis, neuroinflammation, and oxidative stress and also improvement of mitochondrial health.
Collapse
Affiliation(s)
- Morteza Nazari-Serenjeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Hatami-Morassa
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Ramazi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Nourabadi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
6
|
An Eluate of the Medicinal Plant Garcinia kola Displays Strong Antidiabetic and Neuroprotective Properties in Streptozotocin-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8708961. [PMID: 35356236 PMCID: PMC8959977 DOI: 10.1155/2022/8708961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 02/12/2022] [Indexed: 12/04/2022]
Abstract
Materials and Methods G. kola methanolic extract was fractionated using increasingly polar solvents. Fractions were administered to streptozotocin (STZ)-induced diabetic mice until marked motor signs developed in diabetic controls. Fine motor skills indicators were measured in the horizontal grid test (HGT) to confirm the prevention of motor disorders in treated animals. Column chromatography was used to separate the most active fraction, and subfractions were tested in turn in the HGT. Gas chromatography-mass spectrometry (GC-MS) technique was used to assess the components of the most active subfraction. Results Treatment with ethyl acetate fraction and its fifth eluate (F5) preserved fine motor skills and improved the body weight and blood glucose level. At dose 1.71 mg/kg, F5 kept most parameters comparable to the nondiabetic vehicle group values. GC-MS chromatographic analysis of F5 revealed 36 compounds, the most abundantly expressed (41.8%) being the β-lactam molecules N-ethyl-2-carbethoxyazetidine (17.8%), N,N-dimethylethanolamine (15%), and isoniacinamide (9%). Conclusions Our results suggest that subfraction F5 of G. kola extract prevented the development of motor signs and improved disease profile in an STZ-induced mouse model of diabetic encephalopathy. Antidiabetic activity of β-lactam molecules accounted at least partly for these effects.
Collapse
|
7
|
Chen HX, Yang F, He XQ, Li T, Sun YZ, Song JP, Huang XA, Guo WF. Garcinia Biflavonoid 1 Improves Lipid Metabolism in HepG2 Cells via Regulating PPARα. Molecules 2022; 27:molecules27061978. [PMID: 35335339 PMCID: PMC8950208 DOI: 10.3390/molecules27061978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Garcinia biflavonoid 1 (GB1) is one of the active chemical components of Garcinia kola and is reported to be capable of reducing the intracellular lipid deposition, which is the most significant characteristic of non-alcoholic fatty liver disease. However, its bioactive mechanism remains elusive. In the current study, the lipid deposition was induced in HepG2 cells by exposure to oleic acid and palmitic acid (OA&PA), then the effect of GB1 on lipid metabolism and oxidative stress and the role of regulating PPARα in these cells was investigated. We found that GB1 could ameliorate the lipid deposition by reducing triglycerides (TGs) and upregulate the expression of PPARα and SIRT6, suppressing the cell apoptosis by reducing the oxidative stress and the inflammatory factors of ROS, IL10, and TNFα. The mechanism study showed that GB1 had bioactivity in a PPARα-dependent manner based on its failing to improve the lipid deposition and oxidative stress in PPARα-deficient cells. The result revealed that GB1 had significant bioactivity on improving the lipid metabolism, and its potential primary action mechanism suggested that GB1 could be a potential candidate for management of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Hai-Xin Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
| | - Xin-Qian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
| | - Ting Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
| | - Yong-Zhi Sun
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
| | - Jian-Ping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin-An Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Correspondence: (X.-A.H.); (W.-F.G.)
| | - Wen-Feng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.-X.C.); (F.Y.); (X.-Q.H.); (T.L.); (Y.-Z.S.); (J.-P.S.)
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Correspondence: (X.-A.H.); (W.-F.G.)
| |
Collapse
|
8
|
Abodunrin OP, Onifade OF, Adegboyega AE. Therapeutic capability of five active compounds in typical African medicinal plants against main proteases of SARS-CoV-2 by computational approach. INFORMATICS IN MEDICINE UNLOCKED 2022; 31:100964. [PMID: 35647264 PMCID: PMC9125996 DOI: 10.1016/j.imu.2022.100964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a pandemic cause of Corona Virus Disease (COVID-19), that has claimed numerous human lives across the globe. Main protease being the active protein of SARS-CoV-2 requires urgent mitigating effect against the spread of the virus. The therapeutic roles of the active compounds present in ten typical African medicinal plants were investigated in this study. Five active compounds Curcuma longa (Curcumin and Bisdethoxy curcumin), Garcinia kola (kolaviron), Zingiber officinale (Gingerol) and Vernonia amygdalina (Artemisinin) were selected and docked against Main protease through receptor grid generation, protein ligand docking, receptor ligand complex pharmacophore and binding free energy. The results obtained revealed Curcumin had the highest binding score of -8.628 kcal/mol while artermisinin presented the least with -4.123 kcal/mol. The outcome of the pharmacokinetic prediction in this study revealed high transport capacity across the gastrointestinal tract and high blood brain barrier permeability for curcumin, bisdemethoxy curcumin, gingerol and artemisinin. The exemption is gingerol with low LD50 value (250 mg/kg), the LD50 of all active compounds ranged from 2000 to 4228 mg/kg. Adsorption, distribution, metabolism, excretion and toxicity (ADMET) properties exhibited by all compounds portrayed them as non-hepatotoxic, non-cytotoxic, non-mutagenic and non-carcinogenic. The active compounds exhibited drug-likeness features against Main protease of Covid-19.
Collapse
Affiliation(s)
- Oluwasayo Peter Abodunrin
- Radiation and Health Physics, Physical Sciences Department, Bells University of Technology, Ota, Nigeria
| | - Olayinka Fisayo Onifade
- Phytomedicine, Biochemistry and Bioinformatics, Chemical Sciences Department, Bells University of Technology, Ota, Nigeria
| | | |
Collapse
|