1
|
Niu Y, Meng J, Xue Z, Chen Z. PSMA3-AS1: a promising LncRNA as a diagnostic and prognostic biomarker in human cancers. Gene 2025:149521. [PMID: 40268123 DOI: 10.1016/j.gene.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long non-coding RNAs (lncRNAs) have shown increasing potential as biomarkers and therapeutic targets in cancer. Among them, PSMA3-AS1 has garnered significant attention due to its dysregulated expression in various human malignancies and its involvement in key oncogenic processes. This review offers a comprehensive analysis of PSMA3-AS1, including its expression patterns, molecular mechanisms, and clinical significance across different cancer types. It explores its abnormal expression levels, correlation with clinicopathological characteristics, and roles in promoting cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT). The review delves into the molecular pathways through which PSMA3-AS1 exerts its functions, particularly its interactions with microRNAs. Highlighting its strong potential as both a diagnostic and prognostic biomarker, the study underscores the need for further clinical research to fully harness its therapeutic implications. Ultimately, this review aims to consolidate current knowledge on PSMA3-AS1 in human cancers and encourage continued exploration into its utility in innovative diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Yunxia Niu
- Department of Pathology, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu 744603, China
| | - Jinying Meng
- Department of Surgical Oncology, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu 744603, China.
| | - Zhao Xue
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China
| | - Zhi Chen
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China
| |
Collapse
|
2
|
Dang Q. LncRNA DARS-AS1 in human cancers: A comprehensive review of its potency as a biomarker and therapeutic target. Gene 2024; 923:148566. [PMID: 38762015 DOI: 10.1016/j.gene.2024.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Long non-coding RNAs have emerged as important players in cancer biology. Increasing evidence has uncovered their potency in improving cancer management as they can be used as a credible prognostic and diagnostic biomarker. Recently, DARS-AS1 has gained significant attention for its involvement in facilitating tumor progression. So far, numerous research has been reported its upregulation in different malignancies of human body systems and revealed its association with cancer hallmarks as well as clinicopathological characteristics. Importantly, targeting DARS-AS1 holds promise in cancer therapy. In the current study, we provide an in-depth analysis of its expression status and explore the underlying mechanisms through which DARS-AS1 contributes to tumor initiation, growth, invasion, and metastasis. Additionally, we examine the correlation between DARS-AS1 expression and clinicopathological features of cancer patients, shedding light on its potential as a cancer biomarker. Furthermore, we discuss the therapeutic potential of targeting DARS-AS1 in cancer treatment, highlighting emerging strategies, such as RNA interference and small molecule inhibitors. Boosting the understanding of its functional role can open new avenues for precision medicine, thus resulting in better outcomes for cancer patients.
Collapse
Affiliation(s)
- Qiucai Dang
- Zhumadian Preschool Education College, Zhumadian, Henan Province 463000, China.
| |
Collapse
|
3
|
Dian W, Zhang W, Yang L, Li J, Fu S, Ghorbanzadeh S. Linc00265 in human disease: A comprehensive analysis of its implications in human disease pathobiology and therapeutic prospect. Pathol Res Pract 2024; 260:155409. [PMID: 38917707 DOI: 10.1016/j.prp.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Linc00265, a long intergenic non-coding RNA, has garnered significant research attention due to its involvement in various human diseases, particularly cancer. It exhibits tissue-specific and dysregulated expression across multiple cancer types, including blood malignancies, colorectal, gastric, bladder, osteosarcoma, and hepatocellular carcinoma. This dysregulation is often associated with tumor aggressiveness, metastasis, and poor prognosis. Moreover, aberrant expression of Linc00265 has been reported in inflammation-related diseases such as osteoarthritis and sepsis. Mechanistically, Linc00265 acts as a competing endogenous RNA (CeRNA), sequestering specific microRNAs and thereby modulating their downstream targets. Additionally, it influences critical signaling pathways by mediating the key effectors within these pathways. Importantly, the dysregulation of Linc00265 shows promising potential as a diagnostic and prognostic biomarker in several human diseases. This review aims to comprehensively analyze the expression patterns, regulatory mechanisms, and potential biomarker roles of Linc00265 in human diseases, with a particular focus on cancer. By elucidating the functional implications of Linc00265, we can deepen our understanding of its roles in human diseases, potentially paving the way for novel therapeutic interventions in disease management.
Collapse
Affiliation(s)
- Wankang Dian
- Department of Emergency, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China
| | - Wenkai Zhang
- Department of Emergency, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China
| | - Luyu Yang
- Department of Intensive Care, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China.
| | - Jiaying Li
- School of Economics & Management, Hubei University of Science and Technology, Xianning 437100, China.
| | - Shouzhi Fu
- Department of Intensive Care, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China
| | - Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
4
|
Sun G, Liu F, Lesany M, Nemati S. Comprehensive analysis of recently discovered lncRNA-associated competing endogenous RNA network in nasopharyngeal carcinoma. Pathol Res Pract 2024; 258:155314. [PMID: 38696855 DOI: 10.1016/j.prp.2024.155314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelium of the nasopharynx and is characterized by geography-dependent incidence. Despite the high mortality rate, specifically in some ethnic groups, the mechanisms underlying NPC pathogenesis are not thoroughly understood and there is an urgent need to detect the potential and clinically applicable biomarkers to ameliorate the overall survival rate and improve the prognosis of patients. In recent years, research has increasingly focused on the importance of long non-coding RNAs (LncRNAs) in cancer progression. LncRNAs play critical roles in regulating gene expression through mechanisms such as competitively binding to microRNAs (CeRNA). While numerous LncRNAs have been studied in nasopharyngeal carcinoma (NPC), their potential as diagnostic and prognostic biomarkers have not been systematically examined. In the present study, we delve into elucidating the biological functions, molecular mechanisms, and clinical significance of newly identified LncRNAs that serve as sponges for different microRNAs in NPC. We highlight their regulatory mechanisms in promoting cell proliferation, invasion, and metastasis, and discuss their implications in diverse cancer-related signaling pathways. Our overall goal is to emboss the fundamental roles of LncRNA-mediated CeRNA networks in NPC progression, which may open up new avenues for determining the pathogenesis of NPC and developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Guochen Sun
- Otolaryngology Department, Zhejiang Tongde Hospital, Hangzhou, Zhejiang 310000, China.
| | - Feng Liu
- Department of Stomatology, Zhejiang Province, Tongde Hospital, Hangzhou, Zhejiang 310000, China
| | - Maryam Lesany
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Sara Nemati
- Department of Medical sciences, Ardabil branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
5
|
Xiong W, Lu L, Li J. Long non-coding RNAs with essential roles in neurodegenerative disorders. Neural Regen Res 2024; 19:1212-1220. [PMID: 37905867 PMCID: PMC11467921 DOI: 10.4103/1673-5374.385850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Recently, with the advent of high-resolution and high-throughput sequencing technologies, an increasing number of long non-coding RNAs (lncRNAs) have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns, across different neurodegenerative diseases. However, the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood. This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles, regulatory mechanisms, and research status of lncRNAs in Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Finally, this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases, hoping to provide broader implications for developing effective treatments.
Collapse
Affiliation(s)
- Wandi Xiong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Lin Lu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- PKU/McGovern Institute for Brain Research, Peking University, Beijing, China
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan Province, China
- National Institute on Drug Dependence, Peking University, Beijing, China
- PKU/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
6
|
Xu Z, Nemati S. Long intergenic non-protein coding RNA 115 (Linc00115): A notable oncogene in human malignancies. Gene 2024; 897:148066. [PMID: 38070791 DOI: 10.1016/j.gene.2023.148066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Long noncoding RNAs (LncRNAs) are RNA transcripts ranging from 200 to 1000 nucleotides that have emerged as critical regulators of gene expression. Growing evidence highlights their involvement in tumor development. In particular, long intergenic non-protein coding RNA115 (Linc00115) has been identified as an oncogene across various human malignancies, with aberrant expression strongly linked to poor clinical outcomes in cancer patients. This review aims to delve into the expression patterns of Linc00115 and elucidate the underlying molecular mechanisms behind its oncogenic properties. Moreover, we discuss the potential utility of Linc00115 as a valuable diagnostic and prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No. 1 Hospital, Wuhan Hubei, 430022, China.
| | - Sara Nemati
- Department of Medical Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|