1
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
2
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
3
|
Abreu C, Ortega C, Olivero-Deibe N, Carrión F, Gaete-Argel A, Valiente-Echeverría F, Soto-Rifo R, Milan Bonotto R, Marcello A, Pantano S. Customizably designed multibodies neutralize SARS-CoV-2 in a variant-insensitive manner. Front Immunol 2023; 14:1226880. [PMID: 37638023 PMCID: PMC10447908 DOI: 10.3389/fimmu.2023.1226880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
The COVID-19 pandemic evolves constantly, requiring adaptable solutions to combat emerging SARS-CoV-2 variants. To address this, we created a pentameric scaffold based on a mammalian protein, which can be customized with up to 10 protein binding modules. This molecular scaffold spans roughly 20 nm and can simultaneously neutralize SARS-CoV-2 Spike proteins from one or multiple viral particles. Using only two different modules targeting the Spike's RBD domain, this construct outcompetes human antibodies from vaccinated individuals' serum and blocks in vitro cell attachment and pseudotyped virus entry. Additionally, the multibodies inhibit viral replication at low picomolar concentrations, regardless of the variant. This customizable multibody can be easily produced in procaryote systems, providing a new avenue for therapeutic development and detection devices, and contributing to preparedness against rapidly evolving pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Rafaela Milan Bonotto
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | |
Collapse
|
4
|
Wang H, Jia Q, Feng J, Miao C, Ding Y, Liu S, Feng C, Lv Y, Huang J, Han S. Establishment of angiotensin-converting enzyme 2 and cluster of differentiation 147 dual target cell membrane chromatography based on SNAP-tag technology for screening anti severe acute respiratory syndrome coronavirus 2 active components. J Chromatogr A 2023; 1693:463903. [PMID: 36870232 PMCID: PMC9968450 DOI: 10.1016/j.chroma.2023.463903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Patients have different responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and these may be life-threatening for critically ill patients. Screening components that act on host cell receptors, especially multi-receptor components, is challenging. The in-line combination of dual-targeted cell membrane chromatography and a liquid chromatography-mass spectroscopy (LC-MS) system for analyzing angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 147 (CD147) receptors based on SNAP-tag technology provides a comprehensive solution for screening multiple components in complex samples acting on the two receptors. The selectivity and applicability of the system were validated with encouraging results. Under the optimized conditions, this method was used to screen for antiviral components in Citrus aurantium extracts. The results showed that 25 µmol /L of the active ingredient could inhibit virus entry into cells. Hesperidin, neohesperidin, nobiletin, and tangeretin were identified as antiviral components. In vitro pseudovirus assays and macromolecular cell membrane chromatography further verified the interaction of these four components with host-virus receptors, showing good effects on some or all of the pseudoviruses and host receptors. In conclusion, the in-line dual-targeted cell membrane chromatography LC-MS system developed in this study can be used for the comprehensive screening of antiviral components in complex samples. It also provides new insight into small-molecule drug-receptor and macromolecular-protein-receptor interactions.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Jingting Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Chenyang Miao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Yifan Ding
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Sihan Liu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Chaohua Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China
| | - Jing Huang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, 555# Youyi East Road, Xi'an, 710054, China.
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China.
| |
Collapse
|
5
|
Lukiw WJ, Pogue AI. Endogenous miRNA-Based Innate-Immunity against SARS-CoV-2 Invasion of the Brain. Int J Mol Sci 2023; 24:3363. [PMID: 36834773 PMCID: PMC9966119 DOI: 10.3390/ijms24043363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | |
Collapse
|