1
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Preformed Pd(II) Catalysts Based on Monoanionic [N,O] Ligands for Suzuki-Miyaura Cross-Coupling at Low Temperature. Catalysts 2023. [DOI: 10.3390/catal13020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This paper describes the synthesis and catalytic testing of a palladium complex with a 5-membered chelating [N,O] ligand, derived from the condensation of 2,6-diisopropylphenyl aniline and maple lactone. This catalyst was active towards the Suzuki-Miyaura cross-coupling reaction, and its activity was optimised through the selection of base, solvent, catalytic loading and temperature. The optimised conditions are mild, occurring at room temperature and over a short timescale (1 h) using solvents considered to be ‘green’. A substrate scope was then carried out in which the catalyst showed good activity towards aryl bromides with electron-withdrawing groups. The catalyst was active across a broad scope of electron-donating and high-withdrawing aryl bromides with the highest activity shown for weak electron-withdrawing groups. The catalyst also showed good activity across a range of boronic acids and pinacol esters with even boronic acids featuring strong electron-withdrawing groups showing some activity. The catalyst was also a capable catalyst for the cross-coupling of aryl chlorides and phenylboronic acid. This more challenging reaction requires slightly elevated temperatures over a longer timescale but is still considered mild compared to similar examples in the literature.
Collapse
|
3
|
Benzothiazole-Based Palladium Complexes as Efficient Nano-Sized Catalysts for Microwave Hydrothermal Suzuki –Miyaura Cross-Couplings. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Khormi AY, Farghaly TA, Shaaban MR. Microwave-Assisted Synthesis of 2-Aryl and 2,5-Diarylthiophene Derivatives via Suzuki-Miyaura Cross-Coupling Using Novel Palladium Complex as a Catalyst. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1874429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Afaf Y. Khormi
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Thoraya. A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed R. Shaaban
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Synthetic and DFT Modeling Studies on Suzuki–Miyaura Reactions of 4,5-Dibromo-2-methylpyridazin-3(2H)-one with Ferrocene Boronates, Accompanied by Hydrodebromination and a Novel Bridge-Forming Annulation In Vitro Cytotoxic Activity of the Ferrocenyl–Pyridazinone Products. Catalysts 2022. [DOI: 10.3390/catal12060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper presented the efficiency of different Pd-based catalytic systems in a series of SM reactions of 4,5-dibromo-2-methylpyridazin-3(2H)-one with ferroceneboronic acid, ferrocene-1,1′-diboronoc acid, and its bis-pinacol ester. In addition to the disubstituted product, these transformations afford substantial amounts of isomeric 4- and 5-ferrocenyl-2-methylpyridazin-3(2H)-ones, and a unique asymmetric bi-pyridazinone-bridged ferrocenophane with a screwed molecular architecture. The reactions of phenylboronic acid, conducted under the conditions, are proven to be the most reductive in the conversions of ferroceneboronic acid, and produce 2-methyl-4,5-diphenylpyridazin-3(2H)-one as single product, supporting our view about solvent-mediated hydrodehalogenations that are supposed to proceed via the assistance of the ferrocenyl group present in the reaction mixture, or attached to the bromo-pyridazinone scaffold, which is constructed in the first SM coupling of the heterocyclic precursor. A comparative DFT modelling study on the structures and possible transformations of relevant bromo-, ferrocene- and phenyl-containing carbopalladated intermediate pairs was carried out, providing reasonable mechanisms suitable to account for the apparently surprising regioselectivity of the alternative hydrodebromination processes, and for the formation of the ferrocenophane product. Supporting the results of DFT modelling studies, the implication of DMF as a hydrogen transfer agent in the hydrodebromination reactions is evidenced by deuterium labelling experiments using the solvent mixtures DMF-d7–H2O (4:1) and DMF–D2O (4:1). The organometallic products display antiproliferative effects on human malignant cell lines.
Collapse
|
6
|
A. Farghaly T, A. Al-Hussain S, E. A. Zaki M, H. Asghar B, A. Muhammad Z. Synthesis of spiropyrazoles under organic and nonorganic catalysis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220517220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Spiropyrazoles display many biological biological activities such as antitumor, vasodilation, analgesic, phosphodiesterase inhibitors, aldosterone antagonistic, anabolic, androgenic, anti-inflammatory, progestational and salt-retaining activities and they also exert neuroprotection in dopaminergic cell death. Many efforts have been made to obtain these derivatives with high yield and excellent regio-, diastereo- and enantioselectivities. Most of the spiroprazole synthesis methods were proceeded in good to excellent yield in the presence of organic catalysts as for examples squaramide, NHC pre-catalyst, pyrrole derivatives, bis-oxazoline, DMAP, DABCO, thiourea derivatives, DBU, acetic acid and quinoline catalysts. In addition, the inorganic and organo-metallic catalysts have been proven their efficiency in synthesis of various types of spiro-pyrazoles in excellent yield. Thus, in this review we have compiled all citations for the synthesis of spiropyrazoles in the presence of various types of catalysts such as organic, inorganic, and metalorganic catalysts in the range 2020 to 2012. This review article is a useful compilation for researchers interested in the synthesis of spiropyrazole derivatives and will assist them in selecting appropriate catalysts for preparation of their spiropyrazoles.
Collapse
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
7
|
Limarev IP, Zelinskii GE, Belova SA, Dorovatovskii PV, Vologzhanina AV, Lebed EG, Voloshin YZ. Monoribbed‐functionalized macrobicyclic iron(
II
) complexes decorated with terminal reactive and vector groups: synthetic strategy towards, chemical transformations and structural characterization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya P. Limarev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Genrikh E. Zelinskii
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | | | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| |
Collapse
|
8
|
Pei X, Li Y, Lu L, Jiao H, Gong W, Zhang L. Highly Dispersed Pd Clusters Anchored on Nanoporous Cellulose Microspheres as a Highly Efficient Catalyst for the Suzuki Coupling Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44418-44426. [PMID: 34495649 DOI: 10.1021/acsami.1c12850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the depletion of nonrenewable resources such as oil/coal/gas, more and more research studies began to focus on the high-value utilization of residual biomass resources. Herein, for the first time, honeycomb nanoporous microspheres fabricated from renewable biomass resources of cellulose were used as a carrier to fabricate a highly dispersed palladium (Pd) nanocatalyst. Various physicochemical characterizations presented convincing pieces of evidence for the good dispersion of Pd clusters with a mean diameter of 1.6 nm. As the carrier, cellulose microspheres with an interconnected nanoporous structure contributed to the adhesion and dispersion of Pd particles, and their rich hydroxyl groups could fix the Pd particles. Importantly, the cellulose matrix could in situ induce the formation of metallic Pd(0) during calcination without a reductant. The cellulose/Pd catalyst was applied to the Suzuki coupling reaction, which exhibited promising catalytic activity compared to commercial Pd/C and unsupported homogeneous Pd(OAc)2 catalysts, as well as good stability. The utilization of the residual biomass resource to build catalyst materials would be important for the sustainable chemistry.
Collapse
Affiliation(s)
- Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huibin Jiao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
New Palladium(II)-Complex Based on Nitrogen Rich Ligand Efficient Precatalyst for C–C Cross-Coupling in Water Under Microwaves Irradiation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis. Chem Rev 2020; 120:6124-6196. [DOI: 10.1021/acs.chemrev.9b00682] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Andrew L. Clevenger
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan M. Stolley
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Justis Aderibigbe
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|