1
|
Chaabane L, Jaafar Z, Chaaben M, Chaaben S, Ghali AE, Msaddek M, Beyou E, Baouab MHV. Dual-function advanced magnetic bacterial cellulose materials: From enhanced adsorption phenomena to an unprecedented circular green catalytic strategy. J Colloid Interface Sci 2025; 686:1215-1229. [PMID: 39951983 DOI: 10.1016/j.jcis.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
With the growing emphasis on circular catalysis principles and green chemistry, addressing the dual challenge of wastewater treatment and sustainable catalysis has become increasingly critical. Although the adsorption of copper ions using magnetic biomaterials has been widely investigated, its full potential is still not fully understood. In particular, the reutilization of Cu(II)-loaded magnetic bacterial cellulose in circular green catalytic reactions remains underexplored. This study presents a novel magnetic bacterial cellulose-based material, designated as (BC-BPEM)@Fe3O4NPs, engineered through advanced chemical modifications to address these challenges. The adsorption kinetics followed a pseudo-second-order model, indicating chemisorption as the predominant mechanism. A key challenge addressed in this study was the efficient reuse of Cu(II)-loaded magnetic bacterial cellulose-based material. The recovered material was successfully employed as a catalyst in the synthesis of novel 1,4-disubstituted bis-1,2,3-triazoles under green conditions. Notably, the reaction achieved an impressive rate of 0.219 ± 0.006 mmol.gcat-1.min-1 and a 99 % yield within 15 min, using green deep eutectic solvents (ChCl/Gly) and glutathione as a reducing agent. Remarkably, the catalyst retained its high catalytic performance over 20 cycles, maintaining yields consistently between 99 % and 97 %. This study not only emphasizes the seamless integration of adsorption and catalytic recycling but also highlights the sustainability of the approach. Environmental metrics revealed an E-factor of 0.442 kg waste/kg product, a PMI of 1.442 kg materials/kg product, and an RME of 99.83 %, reinforcing the potential of catalyst in both sustainable catalysis and environmental remediation.
Collapse
Affiliation(s)
- Laroussi Chaabane
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France.
| | - Zouhour Jaafar
- CSPBAT, CNRS UMR 7244, F-93017, University Paris 13, Sorbonne Paris City, Bobigny, France; Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Marwa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Département de Chimie, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - Safa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Institut National de la Recherche Scientifique-Centre Énergie Matériaux Télécommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Amel El Ghali
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| | - Moncef Msaddek
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Emmanuel Beyou
- Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France
| | - Mohammed Hassen V Baouab
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| |
Collapse
|
2
|
Aguilar J, Leyva E, Loredo-Carrillo SE, Cárdenas-Chaparro A, Martínez-Richa A, Hernández-López H, Araujo-Huitrado JG, Granados-López AJ, López-Hernández Y, López JA. Synthesis of Novel Fluoro Phenyl Triazoles Via Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells. Curr Org Synth 2024; 21:559-570. [PMID: 37078356 DOI: 10.2174/1570179420666230420084000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 04/21/2023]
Abstract
AIMS Perform the synthesis of novel fluoro phenyl triazoles via click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells. BACKGROUND Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents. OBJECTIVES Synthesize novel fluoro phenyl triazoles via click chemistry and evaluate their antiproliferative activity. METHODS First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells. RESULTS Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom. CONCLUSION Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.
Collapse
Affiliation(s)
- Johana Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP, 78290, México
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP, 78290, México
| | - Silvia Elena Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP, 78290, México
| | - Agobardo Cárdenas-Chaparro
- Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte No. 39-115, Tunja, Boyacá, 15003, Colombia
| | - Antonio Martínez-Richa
- Departamento de Química, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, GTO, 36000, México
| | - Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, carretera Zacatecas-Guadalajara km 6, Zacatecas, Zacatecas, 98160, México
| | - Jorge Gustavo Araujo-Huitrado
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| | - Angélica Judith Granados-López
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| | - Yamilé López-Hernández
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| | - Jesús Adrián López
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| |
Collapse
|
3
|
Wang Z, Zhou X, Gong S, Xie J. MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1070. [PMID: 35407188 PMCID: PMC9000828 DOI: 10.3390/nano12071070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Cu(im)2-derived Cu@N-C composites were used for the first time as efficient heterogeneous catalysts for one-pot 1,3-dipolar cycloaddition of terminal alkynes, aryl halides, and sodium azide to preparation of 1,4-disubstituted 1,2,3-triazoles with broad substrate scope and high yields. The catalyst can be easily reused without the changes of structure and morphology, and the heterogeneity nature was confirmed from the catalyst recyclability and metal leaching test.
Collapse
Affiliation(s)
- Zhuangzhuang Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| | - Xuehao Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| | - Shaofeng Gong
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Jianwei Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| |
Collapse
|
4
|
Amine-catalyzed synthesis of N2-sulfonyl 1,2,3-triazole in water and the tunable N2-H 1,2,3-triazole synthesis in DMSO via metal-free enamine annulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Feng X, Zhao F, Qian R, Guo M, Yang J, Yang R, Meng D. Supramolecular Catalyst Functions in Catalytic Amount: Cucurbit[7]uril Accelerates Click Reaction in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuepu Feng
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Fen Zhao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Rui Qian
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Mengbi Guo
- Industrial Crop Research Institute Yunnan Academy of Agricultural Sciences Kunming 650205 P. R. China
| | - Jing Yang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Rui Yang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - DongLing Meng
- Technology Centre China Tobacco Guangxi Industrial Co., Ltd Nanning 53001 P. R. China
| |
Collapse
|
6
|
Kaushik CP, Sangwan J. Synthesis, characterization and antibacterial activity of the thioether linked 1,2,3-triazoles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1974040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
7
|
Leyva-Ramos S, Cardoso-Ortiz J. Recent Developments in the Synthesis of Tetrazoles and their Pharmacological Relevance. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210193344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heterocycle ring tetrazole is an important moiety relevant to medicinal chemistry
since it is present in some drugs with clinical importance. Its primary biological activity is
being a bioisosteric analogue of the carboxylic acid and cis-amide groups. Its metabolic stability
and other physicochemical properties make it an attractive structure for designing and synthesizing
new pharmaceuticals. The biological activity of tetrazoles is quite extensive and
includes antiviral, antibacterial, anticancer, antifungal, and antioxidant properties; all of them
are discussed in this review. The most effective way to obtain tetrazoles is by azide derivatives,
either in the starting materials by the cycloaddition [3 + 2] of organic azides and nitriles
or by preparing a reactive imidoyl azide intermediate. The nucleophilic behavior of the azide
group is discussed when the raw materials include isocyanides. Some other methods include
alternative synthetic routes like thermolysis. This review also highlights some of the developments regarding the use
of different heterogeneous catalysts to synthesize several tetrazole derivatives.
Collapse
Affiliation(s)
- Socorro Leyva-Ramos
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Jaime Cardoso-Ortiz
- Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
8
|
Leyva E, Aguilar J, González‐Balderas RM, Vega‐Rodríguez S, Loredo‐Carrillo SE. Synthesis of nitrophenyl and fluorophenyl azides and diazides by S
N
Ar under phase‐transfer or microwave irradiation: Fast and mild methodologies to prepare photoaffinity labeling, crosslinking, and click chemistry reagents. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elisa Leyva
- Facultad de Ciencias Químicas Universidad Autónoma de San Luis Potosí San Luis Potosí SLP Mexico
| | - Johana Aguilar
- Facultad de Ciencias Químicas Universidad Autónoma de San Luis Potosí San Luis Potosí SLP Mexico
| | | | - Sarai Vega‐Rodríguez
- Facultad de Ciencias Químicas Universidad Autónoma de San Luis Potosí San Luis Potosí SLP Mexico
| | | |
Collapse
|