1
|
Wang C, Liao ZH, Wu R, Chen K, Zhu S. Enantioselective Synthesis of 1-Dihydrobenzazepines through Rh 2(II)-Catalyzed Cycloisomerization of 1,6-Enyne. J Am Chem Soc 2025; 147:10560-10569. [PMID: 40079800 DOI: 10.1021/jacs.5c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The 1-dihydrobenzazepine skeleton has emerged as a privileged structural motif in bioactive molecules. However, due to a lack of asymmetric methodology, access to chiral 1-dihydrobenzazepines has remained limited. Herein, we report the first intermolecular asymmetric cycloisomerization of benzo-fused enynes for the synthesis of chiral 1-dihydrobenzazepines via dirhodium catalysis. This methodology features high efficiency (up to 98% yield), high enantioselectivity (up to 99% ee), and broad scope of nucleophiles, including oxygen nucleophiles (alcohols, phenols, and carboxylic acids) and carbon nucleophiles (silyl enol ethers). Theoretical and experimental mechanistic studies reveal that the reaction pathway encompasses an asymmetric cycloisomerization, which gives rise to a dirhodium carbene containing a donor-acceptor (D-A) cyclopropane moiety, followed by a ring-opening process and stereoselective nucleophilic attack by external nucleophiles on the cyclopropyl ring. Control experiments demonstrate the pivotal role of the terminal group capped on the alkynyl group of substrates in achieving good efficiency.
Collapse
Affiliation(s)
- Chuntao Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zi-Hao Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Rui Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shifa Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
2
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025; 147:2675-2688. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Tian Y, Liu L, Zeng T, Wu Q, Li B. Skeletal Rearrangement of Oxazole to Azepine and Pyrrole through Dynamic 8π Electrocyclizations. Org Lett 2024; 26:4183-4188. [PMID: 38742794 DOI: 10.1021/acs.orglett.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We present a novel approach for the skeletal rearrangement of an oxazole into an azepine and pyrrole through a dynamic electrocyclization process, showing an innovative, unconventional reaction sequence. This method enables precise control of regioselectivity in competitive 6π and 8π electrocyclization reactions, rendering the final products rich in functional groups that can be further developed for the synthesis of nitrogen-containing scaffolds. This is an unprecedented example of the selective synthesis of seven- and five-member heterocycles via dynamic electrocyclization ring opening or closure.
Collapse
Affiliation(s)
- Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Tu Zeng
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Qian Wu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| |
Collapse
|
4
|
White CM, Zorigt N, Deng T, Driver TG. Iodine(III)-Mediated Oxidation of Anilines to Construct Dibenzazepines. Chemistry 2023; 29:e202301141. [PMID: 37053500 PMCID: PMC10330268 DOI: 10.1002/chem.202301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
The development of an efficient process that produces bioactive medium-sized N-heterocyclic scaffolds from 2-substituted anilines using either iodosobenzene or (bis(trifluoroacetoxy)iodo)-benzene is reported. The tether between the sulfonamide and the aryl group can be varied to access dihydroacridine-, dibenzazepine-, or dibenzazocine scaffolds. While substitution on the aniline portion is limited to electron-neutral- or electron-poor groups, a broader range of functional groups are tolerated on the ortho-aryl substituent and site selective C-NAr bond formation can be achieved. Preliminary mechanistic investigations suggest that medium-ring formation occurs via radical reactive intermediates.
Collapse
Affiliation(s)
- Carmen Margaret White
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Naranchimeg Zorigt
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Tianning Deng
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| |
Collapse
|
5
|
α-Glucosidase and cholinesterase inhibiting potential of a series of semisynthetic nitrogen triterpenic derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Zhao C, Dong A, Ju D, Huang J, Jia R, Liu Y, Zhao J. Pd‐Catalyzed Coupling Cyclization of δ, ϵ‐Alkenyl Oxime toward Access to 1,2‐Oxezapines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chuang Zhao
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Ah‐Ying Dong
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Dongyan Ju
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Jianhong Huang
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Ran Jia
- Department of theoretical chemistry Jilin University Changchun Jilin 130023 P. R. China
| | - Yu Liu
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Jinbo Zhao
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
- College of Pharmacy Shandong First Medical University & Shandong Academy of Medical Sciences Tai-An Shandong 271016 P. R. China
| |
Collapse
|
7
|
Analyzing Indole-fused benzooxazepines as inhibitors of apoptosis pathway-related proteins using multifaceted computational medicinal chemistry. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Nicolai S, Waser J. (4+3) Annulation of Donor-Acceptor Cyclopropanes and Azadienes: Highly Stereoselective Synthesis of Azepanones. Angew Chem Int Ed Engl 2022; 61:e202209006. [PMID: 35833420 PMCID: PMC9545371 DOI: 10.1002/anie.202209006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 12/17/2022]
Abstract
Azepanes are important seven-membered heterocycles, which are present in numerous natural and synthetic compounds. However, the development of convergent synthetic methods to access them remains challenging. Herein, we report the Lewis acid catalyzed (4+3) annulative addition of aryl and amino donor-acceptor cyclopropanes with 2-aza-1,3-dienes. Densely substituted azepane derivatives were obtained in good to excellent yields and with high diastereoselectivity. The reaction occurred under mild conditions with ytterbium triflate as the catalyst. The use of copper triflate with a trisoxazoline (Tox) ligand led to an enantioselective transformation. The obtained cycloadducts were convenient substrates for a series of further modifications, showing the synthetic utility of these compounds.
Collapse
Affiliation(s)
- Stefano Nicolai
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| |
Collapse
|
9
|
Feng Z, Jiao H, Ye Z, Ye J, Xu ZF, Duan S, Li CY. Synthesis of Azepane Derivatives via Formal 1,3-Migration of Hydroxy and Acyloxy Groups and Selective Annulation. Org Lett 2022; 24:5254-5259. [PMID: 35852457 DOI: 10.1021/acs.orglett.2c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Formal 1,3-migration of hydroxy and acyloxy groups initiated by α-imino rhodium carbene was achieved, and the following selective annulations of the corresponding zwitterions could efficiently afford azepane derivatives. Benefiting from a time-saving procedure as well as a good functional group tolerance, this unique migration-annulation protocol could provide an efficient tool for synthesizing seven-membered N-heterocycles. The plausible mechanism is discussed.
Collapse
Affiliation(s)
- Zijuan Feng
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Hongjian Jiao
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Zihang Ye
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Jie Ye
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Ze-Feng Xu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Shengguo Duan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Chuan-Ying Li
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
10
|
Nicolai S, Waser J. (4+3) Annulation of Donor‐Acceptor Cyclopropanes and Azadienes: Highly Stereoselective Synthesis of Azepanones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefano Nicolai
- EPFL ISIC: Ecole polytechnique federale de Lausanne Institut des Sciences et Ingenierie Chimiques SB ISIC EPFL SB ISIC LCSOBCH 4301 (Batochime UNIL)Av. F.-A. Forel 2 1015 Lausanne SWITZERLAND
| | - Jerome Waser
- EPFL: Ecole Polytechnique Federale de Lausanne SB, Institut des sciences et ingénierie chimiques EPFL SB ISIC LCSOBCH 4306 (Bât. BCH)Av. F.-A. Forel 2 1015 Lausanne SWITZERLAND
| |
Collapse
|
11
|
Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, Verma M, Sharma A, Mutreja V. Advances in the Synthesis and Bio-Applications of Pyrazine Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dimple Choudhary
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Meenakshi Verma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
12
|
Zhu G, Zhou J, Liu L, Li X, Zhu X, Lu X, Zhou J, Ye L. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized
N
,
S
‐Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202204603. [DOI: 10.1002/anie.202204603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Guang‐Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ji‐Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Li‐Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jin‐Mei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Zhu G, Zhou J, Liu L, Li X, Zhu X, Lu X, Zhou J, Ye L. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized
N
,
S
‐Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guang‐Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ji‐Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Li‐Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jin‐Mei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
14
|
Li B, Chen C, Jia J, He L. Research progress on antineoplastic, antibacterial, and anti-inflammatory activities of seven-membered heterocyclic derivatives. Curr Med Chem 2022; 29:5076-5096. [PMID: 35345989 DOI: 10.2174/0929867329666220328123953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Seven-membered heterocyclic compounds are important drug scaffolds, because of their unique chemical structures. They widely exist in natural products and show a variety of biological activities. They have commonly been used in central nervous system drugs in the past 30 years. In the past decade, there are many studies on the activities of antitumor, antibacterial, etc. Herein, we summarize the research advances in different kinds of seven-membered heterocyclic compounds containing nitrogen, oxygen, and sulfur heteroatoms with antitumor, antisepsis, and anti-inflammation activities in the past ten years, which is expected to be beneficial to the development and design of novel drugs for the corresponding indications.
Collapse
Affiliation(s)
- Bin Li
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Chen
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jingjing Jia
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling He
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Heise NV, Ströhl D, Schmidt T, Csuk R. Stable triterpenoid iminium salts and their activity as inhibitors of butyrylcholinesterase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
More RR, Kadam AB, Humne VT, Junne SB. Iodine‐mediated expedient synthesis of sulfur‐nitrogen containing heteroaminals under acidic condition. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Archana B. Kadam
- P. G. Department of Chemistry Yeshwant Mahavidyalala Nanded India
| | - Vivek T. Humne
- Department of Chemistry Shri R. R. Lahoti Science College Morshi India
| | - Subhash B. Junne
- P. G. Department of Chemistry Yeshwant Mahavidyalala Nanded India
| |
Collapse
|
17
|
Xie X, Bao M, Chen KW, Xu X, Hu W. Asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine. Org Chem Front 2022. [DOI: 10.1039/d2qo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dirhodium and chiral phosphoric acid co-catalyzed asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine has been developed via Mannich-type interception of transient oxonium ylide. This reaction...
Collapse
|
18
|
Synthesis of mononuclear heterocycles via electrophilic cyclization. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02869-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Li YY, Li S, Fan T, Zhang ZJ, Song J, Gong LZ. Enantioselective Formal [4 + 3] Annulations to Access Benzodiazepinones and Benzoxazepinones via NHC/Ir/Urea Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yang-Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Jing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|