1
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
2
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
3
|
Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation. J Biol Chem 2022; 298:102469. [PMID: 36087837 PMCID: PMC9558053 DOI: 10.1016/j.jbc.2022.102469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain–containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving “autoacylation” of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.
Collapse
|
4
|
Ramadan AA, Mayilsamy K, McGill AR, Ghosh A, Giulianotti MA, Donow HM, Mohapatra SS, Mohapatra S, Chandran B, Deschenes RJ, Roy A. Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity. Viruses 2022; 14:v14030531. [PMID: 35336938 PMCID: PMC8950683 DOI: 10.3390/v14030531] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/02/2023] Open
Abstract
The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed A. Ramadan
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
| | - Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Anandita Ghosh
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
| | - Marc A. Giulianotti
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (M.A.G.); (H.M.D.)
| | - Haley M. Donow
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (M.A.G.); (H.M.D.)
| | - Shyam S. Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Bala Chandran
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
| | - Robert J. Deschenes
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Correspondence: (R.J.D.); (A.R.); Tel.: +1-(813)-974-6393 (R.J.D.); +1-(813)-974-5540 (A.R.)
| | - Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Correspondence: (R.J.D.); (A.R.); Tel.: +1-(813)-974-6393 (R.J.D.); +1-(813)-974-5540 (A.R.)
| |
Collapse
|
5
|
Abstract
DHHC3 is a DHHC-family palmitoyl acyltransferase that is responsible for many mammalian palmitoylation events. By regulating the posttranslational modification of its specific substrates, DHHC3 has shown a strong protumor effect in various cancers. In this review, the authors introduce the research progress of DHHC3 as a new antitumor target through the expression of DHHC3 in patients with tumors, substrate proteins and potential mechanisms. Recent advances in the search for protein structures and inhibitors are also reviewed. Several design strategies to facilitate the optimization of the process of drug design based on DHHC3 are also discussed.
Collapse
|
6
|
Hu L, Tao Z, Wu X. Insights into auto- S-fatty acylation: targets, druggability, and inhibitors. RSC Chem Biol 2021; 2:1567-1579. [PMID: 34977571 PMCID: PMC8637764 DOI: 10.1039/d1cb00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Posttranslational S-fatty acylation (or S-palmitoylation) modulates protein localization and functions, and has been implicated in neurological, metabolic, and infectious diseases, and cancers. Auto-S-fatty acylation involves reactive cysteine residues in the proteins which directly react with fatty acyl-CoA through thioester transfer reactions, and is the first step in some palmitoyl acyltransferase (PAT)-mediated catalysis reactions. In addition, many structural proteins, transcription factors and adaptor proteins might possess such "enzyme-like" activities and undergo auto-S-fatty acylation upon fatty acyl-CoA binding. Auto-S-fatty acylated proteins represent a new class of potential drug targets, which often harbor lipid-binding hydrophobic pockets and reactive cysteine residues, providing potential binding sites for covalent and non-covalent modulators. Therefore, targeting auto-S-fatty acylation could be a promising avenue to pharmacologically intervene in important cellular signaling pathways. Here, we summarize the recent progress in understanding the regulation and functions of auto-S-fatty acylation in cell signaling and diseases. We highlight the druggability of auto-S-fatty acylated proteins, including PATs and other proteins, with potential in silico and rationalized drug design approaches. We also highlight structural analysis and examples of currently known small molecules targeting auto-S-fatty acylation, to gain insights into targeting this class of proteins, and to expand the "druggable" proteome.
Collapse
Affiliation(s)
- Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| |
Collapse
|
7
|
Lan T, Delalande C, Dickinson BC. Inhibitors of DHHC family proteins. Curr Opin Chem Biol 2021; 65:118-125. [PMID: 34467875 DOI: 10.1016/j.cbpa.2021.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Protein S-acylation is a prevalent post-translational protein lipidation that is dynamically regulated by 'writer' protein S-acyltransferases and 'eraser' acylprotein thioesterases. The protein S-acyltransferases comprise 23 aspartate-histidine-histidine-cysteine (DHHC)-containing proteins, which transfer fatty acid acyl groups from acyl-coenzyme A onto protein substrates. DHHC proteins are increasingly recognized as critical regulators of S-acylation-mediated cellular processes and pathology. As our understanding of the importance and breadth of DHHC-mediated biology and pathology expands, so too does the need for chemical inhibitors of this class of proteins. In this review, we discuss the challenges and progress in DHHC inhibitor development, focusing on 2-bromopalmitate, the most commonly used inhibitor in the field, and N-cyanomethyl-N-myracrylamide, a new broad-spectrum DHHC inhibitor. We believe that current and ongoing advances in structure elucidation, mechanistic interrogation, and novel inhibitor design around DHHC proteins will spark innovative strategies to modulate these critical proteins in living systems.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States
| | - Clémence Delalande
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
8
|
Coronel Arrechea C, Giolito ML, García IA, Soria G, Valdez Taubas J. A novel yeast-based high-throughput method for the identification of protein palmitoylation inhibitors. Open Biol 2021; 11:200415. [PMID: 34343464 PMCID: PMC8331233 DOI: 10.1098/rsob.200415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.
Collapse
Affiliation(s)
- Consuelo Coronel Arrechea
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Luz Giolito
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Gastón Soria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
9
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
10
|
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J 2021; 289:861-882. [PMID: 33624421 DOI: 10.1111/febs.15781] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
11
|
Miles MR, Seo J, Jiang M, Wilson ZT, Little J, Hao J, Andrade J, Ueberheide B, Tseng GN. Global identification of S-palmitoylated proteins and detection of palmitoylating (DHHC) enzymes in heart. J Mol Cell Cardiol 2021; 155:1-9. [PMID: 33636221 DOI: 10.1016/j.yjmcc.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
High-throughput experiments suggest that almost 20% of human proteins may be S-palmitoylatable, a post-translational modification (PTM) whereby fatty acyl chains, most commonly palmitoyl chain, are linked to cysteine thiol groups that impact on protein trafficking, distribution and function. In human, protein S-palmitoylation is mediated by a group of 23 palmitoylating 'Asp-His-His-Cys' domain-containing (DHHC) enzymes. There is no information on the scope of protein S-palmitoylation, or the pattern of DHHC enzyme expression, in the heart. We used resin-assisted capture to pull down S-palmitoylated proteins from human, dog, and rat hearts, followed by proteomic search to identify proteins in the pulldowns. We identified 454 proteins present in at least 2 species-specific pulldowns. These proteins are operationally called 'cardiac palmitoylome'. Enrichment analysis based on Gene Ontology terms 'cellular component' indicated that cardiac palmitoylome is involved in cell-cell and cell-substrate junctions, plasma membrane microdomain organization, vesicular trafficking, and mitochondrial enzyme organization. Importantly, cardiac palmitoylome is uniquely enriched in proteins participating in the organization and function of t-tubules, costameres and intercalated discs, three microdomains critical for excitation-contraction coupling and intercellular communication of cardiomyocytes. We validated antibodies targeting DHHC enzymes, and detected eleven of them expressed in hearts across species. In conclusion, we provide resources useful for investigators interested in studying protein S-palmitoylation and its regulation by DHHC enzymes in the heart. We also discuss challenges in these efforts, and suggest methods and tools that should be developed to overcome these challenges.
Collapse
Affiliation(s)
- Madeleine R Miles
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - John Seo
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Min Jiang
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Zachary T Wilson
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Janay Little
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Jon Hao
- Poochon Scientific, Frederick, MD, United States
| | - Joshua Andrade
- Proteomics Laboratory, Division of Advance Research Technology, New York University, School School of Medicine, New York, NY, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advance Research Technology, New York University, School School of Medicine, New York, NY, United States; Department of Biochemistry and Molecular Pharmacology, New York University, School of Medicine, New York, NY, United States; Department of Neurology, New York University, School of Medicine, New York, NY, United States
| | - Gea-Ny Tseng
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
12
|
Abstract
Protein S-acylation (commonly known as palmitoylation) is a widespread reversible lipid modification, which plays critical roles in regulating protein localization, activity, stability, and complex formation. The deregulation of protein S-acylation contributes to many diseases such as cancer and neurodegenerative disorders. The past decade has witnessed substantial progress in proteomic analysis of protein S-acylation, which significantly advanced our understanding of S-acylation biology. In this review, we summarized the techniques for the enrichment of S-acylated proteins or peptides, critically reviewed proteomic studies of protein S-acylation at eight different levels, and proposed major challenges for the S-acylproteomics field. In summary, proteome-scale analysis of protein S-acylation comes of age and will play increasingly important roles in discovering new disease mechanisms, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Yang Wang
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Plain F, Howie J, Kennedy J, Brown E, Shattock MJ, Fraser NJ, Fuller W. Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase. Commun Biol 2020; 3:411. [PMID: 32737405 PMCID: PMC7395175 DOI: 10.1038/s42003-020-01145-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.
Collapse
Affiliation(s)
- Fiona Plain
- School of Medicine, University of Dundee, Dundee, UK
| | - Jacqueline Howie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Elaine Brown
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, King's College London, London, UK
| | | | - William Fuller
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Therapeutic targeting of protein S-acylation for the treatment of disease. Biochem Soc Trans 2019; 48:281-290. [DOI: 10.1042/bst20190707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
The post-translational modification protein S-acylation (commonly known as palmitoylation) plays a critical role in regulating a wide range of biological processes including cell growth, cardiac contractility, synaptic plasticity, endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that catalyse the addition of fatty acid groups to specific cysteine residues on target proteins, and acyl proteins thioesterases, proteins that hydrolyse thioester linkages, are important pharmaceutical targets. At present, no therapeutic drugs have been developed that act by changing the palmitoylation status of specific target proteins. Here, we consider the role that palmitoylation plays in the development of diseases such as cancer and detail possible strategies for selectively manipulating the palmitoylation status of specific target proteins, a necessary first step towards developing clinically useful molecules for the treatment of disease.
Collapse
|
15
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
16
|
AMPAR Palmitoylation Tunes Synaptic Strength: Implications for Synaptic Plasticity and Disease. J Neurosci 2019; 39:5040-5043. [PMID: 31243093 DOI: 10.1523/jneurosci.0055-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/21/2022] Open
|
17
|
Mitchell DA, Pendleton LC, Deschenes RJ. In Vitro Assays to Monitor the Enzymatic Activities of zDHHC Protein Acyltransferases. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 2009:169-177. [PMID: 31152403 DOI: 10.1007/978-1-4939-9532-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of zDHHC protein acyltransferase (PAT) enzymes catalyze the S-palmitoylation of target proteins via a two-step mechanism. The first step involves transfer of palmitate from the palmitoyl-CoA donor to the active site cysteine of the zDHHC PAT enzyme, releasing reduced CoA (CoASH). In the second step, the palmitoyl-PAT intermediate thioester reacts with a cysteine side chain within the target substrate to produce the palmitoylated substrate product or, in the absence of a protein substrate, the palmitoyl-PAT intermediate thioester is hydrolyzed and releases palmitate. Formation and resolution of the palmitoyl-PAT intermediate complex (autopalmitoylation) is measured using a coupled enzyme system that monitors the production of CoASH via reduction of NAD+ by the α-ketoglutarate dehydrogenase complex. This assay can be used to isolate and characterize modulators of autopalmitoylation and is scalable to high-throughput screening (HTS). A second fluorescence-based assay is described that monitors the hydrolysis of the palmitoyl-PAT thioester linked intermediate by thin-layer chromatography using a palmitoyl-CoA analog, BODIPY®-C12:0-CoA, as a substrate. These two assays provide a methodology to quantify the first enzymatic step of the two-step zDHHC PAT reaction.
Collapse
Affiliation(s)
- David A Mitchell
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Laura C Pendleton
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Robert J Deschenes
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
18
|
Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep 2018; 19:embr.201846666. [PMID: 30232163 DOI: 10.15252/embr.201846666] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S-palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp-His-His-Cys (DHHC)-family palmitoyl S-acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl-protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S-palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|