1
|
Puhr HC, Xenophontos E, Giraut A, Litière S, Boone L, Bogaerts J, Collienne M, Preusser M. Kidney function assessment for eligibility in clinical cancer trials - Data from the European Organisation for Research and Treatment of Cancer. Eur J Cancer 2024; 210:114302. [PMID: 39226664 DOI: 10.1016/j.ejca.2024.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE There is no consensus on how to estimate kidney function for the assessment of eligibility in clinical cancer trials. PATIENTS AND METHODS We recalculated the creatinine clearance (CrCl)/glomerular filtration rate (GFR) at baseline in a total of 1768 patients enrolled in twelve clinical trials using the Cockcroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), 2021 Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI 2021) and European Kidney Function Consortium (EKFC) formulas. Patients were classified as having renal impairment (RI; CrCl/GFR <60 mL/min) or no renal impairment (NRI; CrCl/GFR ≥60 mL/min) with each of the four formulas, respectively. Furthermore, we analyzed the number of adverse events (AE) per month under study treatment using measures of central tendency, variability and regression models. RESULTS Using CG, EKFC, MDRD and CKD-EPI 2021, 152 (8 %), 140 (8 %), 110 (6 %), and 61 (4 %) patients had RI respectively. Indeed, 47 (3 %) patients had RI using all 4 formulas, while 158 (9 %) had RI by at least one but not all four methods. CG showed the broadest variability and inconsistencies with other methods. All calculation methods performed similarly for excluding patients at risk of severe AE. EKFC demonstrated superior predictive ability for excluding patients at risk of renal and urinary tract AE. CONCLUSION This post hoc analysis highlights the importance of choosing accurate and representative methods for kidney function estimation in clinical cancer trials. CG should be replaced by newer methods. While CKD-EPI 2021 may maximize trial accrual, EKFC should be considered for treatment affecting kidney function.
Collapse
Affiliation(s)
- Hannah C Puhr
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium; Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.
| | - Eleni Xenophontos
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium.
| | - Anne Giraut
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium.
| | - Saskia Litière
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium.
| | - Luc Boone
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium.
| | - Jan Bogaerts
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium.
| | - Maike Collienne
- European Organisation for Research and Treatment of Cancer, Headquarters, Brussels, Belgium.
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Bas TG, Duarte V. Biosimilars in the Era of Artificial Intelligence-International Regulations and the Use in Oncological Treatments. Pharmaceuticals (Basel) 2024; 17:925. [PMID: 39065775 PMCID: PMC11279612 DOI: 10.3390/ph17070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This research is based on three fundamental aspects of successful biosimilar development in the challenging biopharmaceutical market. First, biosimilar regulations in eight selected countries: Japan, South Korea, the United States, Canada, Brazil, Argentina, Australia, and South Africa, represent the four continents. The regulatory aspects of the countries studied are analyzed, highlighting the challenges facing biosimilars, including their complex approval processes and the need for standardized regulatory guidelines. There is an inconsistency depending on whether the biosimilar is used in a developed or developing country. In the countries observed, biosimilars are considered excellent alternatives to patent-protected biological products for the treatment of chronic diseases. In the second aspect addressed, various analytical AI modeling methods (such as machine learning tools, reinforcement learning, supervised, unsupervised, and deep learning tools) were analyzed to observe patterns that lead to the prevalence of biosimilars used in cancer to model the behaviors of the most prominent active compounds with spectroscopy. Finally, an analysis of the use of active compounds of biosimilars used in cancer and approved by the FDA and EMA was proposed.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1781421, Chile;
| | | |
Collapse
|
3
|
Hulin A, Gelé T, Fenioux C, Kempf E, Sahali D, Tournigand C, Ollero M. Pharmacology of Tyrosine Kinase Inhibitors: Implications for Patients with Kidney Diseases. Clin J Am Soc Nephrol 2024; 19:927-938. [PMID: 38079278 PMCID: PMC11254026 DOI: 10.2215/cjn.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tyrosine kinase inhibitors (TKI) have introduced a significant advancement in cancer management. These compounds are administered orally, and their absorption holds a pivotal role in determining their variable efficacy. They exhibit extensive distribution within the body, binding strongly to both plasma and tissue proteins. Often reliant on efflux and influx transporters, TKI undergo primary metabolism by intestinal and hepatic cytochrome P450 enzymes, with nonkidney clearance being predominant. Owing to their limited therapeutic window, many TKI display considerable intraindividual and interindividual variability. This review offers a comprehensive analysis of the clinical pharmacokinetics of TKI, detailing their interactions with drug transporters and metabolic enzymes, while discussing potential clinical implications. The prevalence of kidney conditions, such as AKI and CKD, among patients with cancer is explored in their effect on TKI pharmacokinetics. Finally, the potential nephrotoxicity associated with TKI is also examined.
Collapse
Affiliation(s)
- Anne Hulin
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Thibaut Gelé
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Charlotte Fenioux
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Emmanuelle Kempf
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Dil Sahali
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Nephrology Unit, University Medicine Department of Medicine, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Christophe Tournigand
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Mario Ollero
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
4
|
Ogasawara A, Ide R, Inoue S, Teng R, Kawaguchi A. Effect of Hepatic and Renal Impairment on the Pharmacokinetics of Dersimelagon (MT-7117), an Oral Melanocortin-1 Receptor Agonist. Clin Pharmacol Drug Dev 2024; 13:729-738. [PMID: 38746989 DOI: 10.1002/cpdd.1413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 07/05/2024]
Abstract
Dersimelagon is an orally administered selective melanocortin-1 receptor agonist being investigated for treatment of erythropoietic protoporphyria, X-linked protoporphyria, and diffuse cutaneous systemic sclerosis. Dersimelagon is extensively metabolized in the liver, and potential recipients may have liver dysfunction. Further, effects of renal impairment on pharmacokinetic properties should be established in drugs intended for chronic use. Two separate studies (ClinicalTrials.gov: NCT04116476; NCT04656795) evaluated the effects of hepatic and renal impairment on dersimelagon pharmacokinetics, safety, and tolerability. Participants with mild (n = 7) or moderate (n = 8) hepatic impairment or normal hepatic function (n = 8) received a single oral 100-mg dersimelagon dose. Participants with mild (n = 8), moderate (n = 8), or severe (n = 8) renal impairment or normal renal function (n = 8) received a single 300-mg dose. Systemic exposure to dersimelagon was comparable with mild hepatic impairment but higher with moderate hepatic impairment (maximum observed plasma concentration, 1.56-fold higher; area under the plasma concentration-time curve from time 0 extrapolated to infinity, 1.70-fold higher) compared with normal hepatic function. Maximum observed plasma concentration and area under the plasma concentration-time curve from time 0 extrapolated to infinity were similar with moderate renal impairment but higher with mild (1.86- and 1.87-fold higher, respectively) and severe (1.17- and 1.45-fold higher, respectively) renal impairment versus normal renal function. Dersimelagon was generally well tolerated.
Collapse
Affiliation(s)
| | - Ryosuke Ide
- Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Shinsuke Inoue
- Mitsubishi Tanabe Pharma Development America, Inc., Jersey City, NJ, USA
| | - Renli Teng
- CareCeutics LLC, Berwyn, Pennsylvania, USA
| | | |
Collapse
|
5
|
Tucci M, Cosmai L, Pirovano M, Campisi I, Re SGV, Porta C, Gallieni M, Piergiorgio M. How to deal with renal toxicities from immune-based combination treatments in metastatic renal cell carcinoma. A nephrological consultation for Oncologists. Cancer Treat Rev 2024; 125:102692. [PMID: 38492515 DOI: 10.1016/j.ctrv.2024.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
We are witnessing a revolution in the treatment of metastatic renal cell carcinoma (mRCC). Indeed, several immune-based combinations (ICI [immune checkpoint inhibitor] + ICI, or ICI + antiangiogenic agents) have been approved as first-line therapy for mRCC after demonstrating superior efficacy over the previous standard. Despite all the improvements made, safety remains a critical issue, adverse events (AEs) being the main reason for drug discontinuations or dose reductions, ultimately resulting in an increased risk of losing efficacy. Thus, a good understanding of the AEs associated with the use of immune-based combinations, their prevention, and management, are key in order to maximize therapeutic effectiveness. Among these AEs, renal ones are relatively frequent, but always difficult to be diagnosed, not to take into account that it is often difficult to determine which drug is to blame for such toxicities. Chronic kidney disease (CKD) is a common finding in patients with RCC, either as a pre-existing condition and/or as a consequence of cancer and its treatment; furthermore, CKD, especially in advanced stages and in patients undergoing dialysis, may influence the pharmacokinetics and pharmacodynamics properties of anticancer agents. Finally, managing cancer therapy in kidney transplanted patients is another challenge. In this review, we discuss the therapy management of immune-based combinations in patients with CKD, on dialysis, or transplanted, as well as their renal toxicities, with a focus on their prevention, detection and practical management, taking into account the crucial role of the consulting nephrologist within the multidisciplinary care of these patients.
Collapse
Affiliation(s)
- Marcello Tucci
- Division of Medical Oncology, "Cardinal Massaia" Hospital, Asti, Italy
| | - Laura Cosmai
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Marta Pirovano
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ilaria Campisi
- Department of Oncology, University of Turin, Turin, Italy.
| | - Sartò Giulia Vanessa Re
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.
| | - Maurizio Gallieni
- Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Messa Piergiorgio
- Division of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Rad NK, Heydari Z, Tamimi AH, Zahmatkesh E, Shpichka A, Barekat M, Timashev P, Hossein-Khannazer N, Hassan M, Vosough M. Review on Kidney-Liver Crosstalk: Pathophysiology of Their Disorders. CELL JOURNAL 2024; 26:98-111. [PMID: 38459727 PMCID: PMC10924833 DOI: 10.22074/cellj.2023.2007757.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 03/10/2024]
Abstract
Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heydari
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Amir Hossein Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. ,
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Nishiyama H, Inoue T, Koizumi Y, Kobayashi Y, Kitamura H, Yamamoto K, Takeda T, Yamamoto T, Yamamoto R, Matsubara T, Hoshino J, Yanagita M. Chapter 2:indications and dosing of anticancer drug therapy in patients with impaired kidney function, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022. Int J Clin Oncol 2023; 28:1298-1314. [PMID: 37572198 DOI: 10.1007/s10147-023-02377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/25/2023] [Indexed: 08/14/2023]
Abstract
This comprehensive review discusses the dosing strategies of cancer treatment drugs for patients with impaired kidney function, specifically those with chronic kidney disease (CKD), undergoing hemodialysis, and kidney transplant recipients. CKD patients often necessitate dose adjustments of chemotherapeutic agents, e.g., platinum preparations, pyrimidine fluoride antimetabolites, antifolate agents, molecularly targeted agents, and bone-modifying agents, to prevent drug accumulation and toxicity due to diminished renal clearance of the administered drugs and their metabolites. In hemodialysis patients, factors such as drug removal from hemodialysis and altered pharmacokinetics demand careful optimization of anticancer drug therapy, including dose adjustment and timing of administration. While free cisplatin is removed by hemodialysis, most of the tissue- and protein-bound cisplatin remains in the body and rebound cisplatin elevations are observed after hemodialysis. It is not recommended hemodialysis for drug removal, regardless of timing. Kidney transplant patients encounter unique challenges in cancer treatment, as maintaining the balance between reduction of immunosuppression, switching to mTOR inhibitors, and considering potential drug interactions with chemotherapeutic agents and immunosuppressants are crucial for preventing graft rejection and achieving optimal oncologic outcomes. The review underscores the importance of personalized, patient-centric approaches to anticancer drug therapy in patients with impaired kidney function.
Collapse
Affiliation(s)
- Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Takamitsu Inoue
- Department of Renal and Urological Surgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kitamura
- Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takehito Yamamoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryohei Yamamoto
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Arakawa H, Kato Y. Emerging Roles of Uremic Toxins and Inflammatory Cytokines in the Alteration of Hepatic Drug Disposition in Patients with Kidney Dysfunction. Drug Metab Dispos 2023; 51:1127-1135. [PMID: 36854605 DOI: 10.1124/dmd.122.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Patients with kidney dysfunction exhibit distinct pharmacokinetic profiles compared to those with normal kidney function. Hence, it is desirable to monitor the drug efficacy and toxicity caused by fluctuations in plasma drug concentrations associated with kidney dysfunction. Recently, pharmacokinetic information of drugs excreted mainly through the urine of patients with kidney dysfunction has been reported via drug-labeling information. Pharmacokinetic changes in drugs mainly eliminated by the liver cannot be overlooked as drug metabolism and/or transport activity in the liver may also be altered in patients with kidney dysfunction; however, the underlying mechanisms remain unclear. To plan an appropriate dosage regimen, it is necessary to clarify the underlying processes of functional changes in pharmacokinetic proteins. In recent years, uremic toxins have been shown to reduce the activity and/or expression of renal and hepatic transporters. This inhibitory effect has been reported to be time-dependent. In addition, inflammatory cytokines, such as interleukin-6, released from immune cells activated by uremic toxins and/or kidney injury can reduce the expression levels of drug-metabolizing enzymes and transporters in human hepatocytes. In this mini-review, we have summarized the renal and hepatic pharmacokinetic changes as well as the potential underlying mechanisms in kidney dysfunction, such as the chronic kidney disease and acute kidney injury. SIGNIFICANCE STATEMENT: Patients with kidney dysfunction exhibit distinct pharmacokinetic profiles compared to those with normal kidney function. Increased plasma concentrations of uremic toxins and inflammatory cytokines during kidney disease may potentially affect the activities and/or expression levels of drug-metabolizing enzymes and transporters in the liver and kidneys.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Zhao D, Long X, Wang J. Dose Adjustment of Poly (ADP‑Ribose) Polymerase Inhibitors in Patients with Hepatic or Renal Impairment. Drug Des Devel Ther 2022; 16:3947-3955. [PMID: 36405648 PMCID: PMC9673935 DOI: 10.2147/dddt.s387920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/08/2022] [Indexed: 08/30/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are small-molecule inhibitors of PARP enzymes (including PARP1, PARP2, and PARP3) that exhibit activity against tumor cells with defects in DNA repair. In recent years, five PARP inhibitors, olaparib, niraparib, rucaparib, talazoparib and veliparib, have been developed for the treatment of solid tumors, particularly in patients with breast-related cancer antigen (BRCA) 1/2 mutations, or those without a functional homologous recombination repair pathway. These novel treatments exhibit improved efficacy and toxicity when compared to conventional chemotherapy agents. The five PARP inhibitors are eliminated primarily via the liver and kidneys, hepatic or renal impairment may significantly affect their pharmacokinetics (PK). Therefore, it is important to know the effects of hepatic or renal impairment on the PK and safety of PARP inhibitors. In this review, we characterize and summarize the effects of hepatic and renal function on the PK of PARP inhibitors and provide specific recommendations for clinicians when prescribing PARP inhibitors in patients with hepatic or renal impairment.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, People’s Republic of China
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, People’s Republic of China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, People’s Republic of China
| |
Collapse
|
10
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Hoch M, Sato M, Zack J, Quinlan M, Sengupta T, Allepuz A, Aimone P, Hourcade-Potelleret F. Pharmacokinetics of Asciminib in Individuals With Hepatic or Renal Impairment. J Clin Pharmacol 2021; 61:1454-1465. [PMID: 34115385 DOI: 10.1002/jcph.1926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Asciminib is an investigational, first-in-class, specifically targeting the ABL myristoyl pocket (STAMP) inhibitor of BCR-ABL1 with a new mechanism of action compared with approved ATP-competitive tyrosine kinase inhibitors. This report describes the findings from 2 phase 1 studies assessing the pharmacokinetic (PK) profile of a single dose of asciminib (40 mg) in individuals with impaired renal function (based on absolute glomerular filtration rate; NCT03605277) or impaired hepatic function (based on Child-Pugh classification; NCT02857868). Individuals with severe renal impairment exhibited 49%-56% higher exposure (area under the curve [AUC]), with similar maximum plasma concentration (Cmax ), than matched healthy controls. Based on these findings, as per the protocol, the PK of asciminib in individuals with mild or moderate renal impairment was not assessed. In individuals with mild and severe hepatic impairment, asciminib AUC was 21%-22% and 55%-66% higher, respectively, and Cmax was 26% and 29% higher, respectively, compared with individuals with normal hepatic function. Individuals with moderate hepatic impairment had similar asciminib AUC and Cmax than matched healthy controls. The increase in asciminib AUC and Cmax in the mild hepatic impairment cohort was mainly driven by 1 participant with particularly high exposure. Asciminib was generally well tolerated, and the safety data were consistent with its known safety profile. In summary, these findings indicate that renal or hepatic impairment has no clinically meaningful effect on the exposure or safety profile of asciminib, and support its use in patients with varying degrees of renal or hepatic dysfunction.
Collapse
Affiliation(s)
- Matthias Hoch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Masahiko Sato
- Novartis Institutes for Biomedical Research, Novartis Pharma K.K, Tokyo, Japan
| | - Julia Zack
- Novartis Pharmaceuticals, East Hanover, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ravenstijn P, Chetty M, Manchandani P. Design and conduct considerations for studies in patients with impaired renal function. Clin Transl Sci 2021; 14:1689-1704. [PMID: 33982447 PMCID: PMC8504825 DOI: 10.1111/cts.13061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
An impaired renal function, including acute and chronic kidney disease and end‐stage renal disease, can be the result of aging, certain disease conditions, the use of some medications, or as a result of smoking. In patients with renal impairment (RI), the pharmacokinetics (PKs) of drugs or drug metabolites may change and result in increased safety risks or decreased efficacy. In order to make specific dose recommendations in the label of drugs for patients with RI, a clinical trial may have to be conducted or, when not feasible, modeling and simulations approaches, such as population PK modeling or physiologically‐based PK modelling may be applied. This tutorial aims to provide an overview of the global regulatory landscape and a practical guidance for successfully designing and conducting clinical RI trials or, alternatively, on applying modeling and simulation tools to come to a dose recommendation for patients with RI in the most efficient manner.
Collapse
Affiliation(s)
| | - Manoranjenni Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Pooja Manchandani
- Clinical Pharmacology and Exploratory Development, Astellas Pharma US Inc., Northbrook, Illinois, USA
| |
Collapse
|
13
|
Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant 2021; 37:1218-1228. [PMID: 33527986 DOI: 10.1093/ndt/gfaa297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Several theories regarding acute kidney injury (AKI)-related mortality have been entertained, although mounting evidence supports the paradigm that impaired kidney function directly and adversely affects the function of several remote organs. The kidneys and liver are fundamental to human metabolism and detoxification, and it is therefore hardly surprising that critical illness complicated by hepatorenal dysfunction portends a poor prognosis. Several diseases can simultaneously impact the proper functioning of the liver and kidneys, although this review will address the impact of AKI on liver function. While evidence for this relationship in humans remains sparse, we present supportive studies and then discuss the most likely mechanisms by which AKI can cause liver dysfunction. These include 'traditional' complications of AKI (uremia, volume overload and acute metabolic acidosis, among others) as well as systemic inflammation, hepatic leukocyte infiltration, cytokine-mediated liver injury and hepatic oxidative stress. We conclude by addressing the therapeutic implications of these findings to clinical medicine.
Collapse
Affiliation(s)
- Anthony Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas Stiles
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
14
|
Masuo Y, Fujita KI, Mishiro K, Seba N, Kogi T, Okumura H, Matsumoto N, Kunishima M, Kato Y. 6-Hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor elevated in renal failure patients. Drug Metab Pharmacokinet 2020; 35:555-562. [PMID: 33191090 DOI: 10.1016/j.dmpk.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
The hepatic uptake transporter organic anion transporting polypeptide (OATP) 1B1 is inhibited by some uremic toxins; however, direct inhibition can only partially explain the delayed systemic elimination of substrate drugs in renal failure patients. This study aimed to examine the long-lasting inhibition of OATP1B1 by uremic toxins and their metabolites. Preincubation of HEK293/OATP1B1 cells with 21 uremic toxins resulted in almost no change in the uptake of a typical substrate [3H]estrone-3-sulfate (E1S), although some directly inhibited [3H]E1S uptake. In contrast, preincubation with an indole metabolite, 6-hydroxyindole, reduced [3H]E1S uptake, even after the inhibitor was washed out before [3H]E1S incubation. Such long-lasting inhibition by 6-hydroxyindole was time-dependent and recovered after a 3-h incubation without 6-hydroxyindole. Preincubation with 6-hydroxyindole increased the Km for [3H]E1S uptake with minimal change in Vmax. This was compatible with no change in the cell-surface expression of OATP1B1, as assessed by a biotinylation assay. Preincubation with 6-hydroxyindole reduced [3H]E1S uptake in human hepatocytes without changes in OATP1B1 mRNA. Plasma concentration of 6-hydroxyindole in renal failure patients increased as renal function decreased, but might be insufficient to exhibit potent OATP1B1 inhibition. In conclusion, 6-hydroxyindole is an endogenous long-lasting OATP1B1 inhibitor with elevated plasma concentrations in renal failure patients.
Collapse
Affiliation(s)
- Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Kenji Mishiro
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Seba
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Kogi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidenori Okumura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Matsumoto
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Munetaka Kunishima
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|