1
|
Caravia LG, Mitranovici MI, Oala IE, Tiron AT, Simionescu AA, Borcan AM, Craina M. The Importance of Cancer Stem Cells and Their Pathways in Endometrial Cancer: A Narrative Review. Cells 2025; 14:594. [PMID: 40277919 PMCID: PMC12025850 DOI: 10.3390/cells14080594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Endometrial cancer is one of the most common malignancies seen in women in developed countries. While patients in the early stages of this cancer show better responses to surgery, adjuvant hormonal therapy, and chemotherapy, patients with recurrence show treatment resistance. Researchers have recently focused on cancer stem cells (CSCs) in the treatment of gynecologic cancer in general but also specifically in endometrial cancer. CSCs have been investigated because of their resistance to conventional therapies, such as chemo- and radiotherapy, and their ability to induce the progression and recurrence of malignancy. The activation of alternative pathways, such as WNT, PI3K, NF-kB, or NOTCH, could be the basis of the acquisition of these abilities of CSCs. Their specific markers and signaling pathways could be treatment targets for CSCs. In this article, we discuss the importance of obtaining a better understanding of the molecular basis and pathways of CSCs in endometrial cancer and the role of CSCs, aiming to discover more specific therapeutic approaches.
Collapse
Affiliation(s)
- Laura Georgiana Caravia
- Division of Cellular and Molecular Biology and Histology, Department of Morphological Sciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Melinda Ildiko Mitranovici
- Public Health Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Ioan Emilian Oala
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street, 331057 Hunedoara, Romania;
| | - Andreea Taisia Tiron
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Anca Angela Simionescu
- Department of Obstretics and Gynecology, Filantropia, Faculty of Medicine Carol Davila, 011171 Bucharest, Romania;
| | - Alina Maria Borcan
- Department of Microbiology, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, Faculty of Medicine Carol Davila, 021105 Bucharest, Romania;
| | - Marius Craina
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
2
|
Geetha AVS, Harithpriya K, Ganesan K, Ramkumar KM. Exploring the Role of Hypoxia and HIF-1α in the Intersection of Type 2 Diabetes Mellitus and Endometrial Cancer. Curr Oncol 2025; 32:106. [PMID: 39996906 PMCID: PMC11854729 DOI: 10.3390/curroncol32020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes and Cancer are the most complex chronic diseases, accounting for significant global mortality and morbidity. The association between Type 2 DM (T2DM) and endometrial cancer (EC) is multifaced, sharing numerous risk factors, including insulin resistance, obesity, hypoxia, and oxidative stress. Hypoxia plays a vital role in T2DM pathogenesis by altering the insulin level and pancreatic β-cell failure through an imbalance between antioxidant enzymes and cellular oxidative levels, while chronic inflammation contributes to EC malignancy. HIF-1α is a potent transcription factor involved in modulating cellular responses to hypoxia within the disease environment. Targeting the HIF-1α signaling cascade, a major metabolic regulator may contribute to advanced therapeutic advances. This review focuses on the association between T2DM and EC, especially focusing on hypoxia and HIF signaling pathways. These intersect with key pathways involved in T2DM and EC pathology, such as insulin signaling, PI3K/AKT, mTOR pathway, MUC1/HIF-1α pathway, and hormonal imbalance. Understanding this complex relationship paves the way for future researchers to develop HIF-1α-targeted therapies that could lead to novel combination therapies to treat these comorbid conditions.
Collapse
Affiliation(s)
- Alagappan V. S. Geetha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (A.V.S.G.); (K.H.)
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (A.V.S.G.); (K.H.)
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (A.V.S.G.); (K.H.)
| |
Collapse
|
3
|
Englert-Golon M, Tokłowicz M, Żbikowska A, Sajdak S, Kotwicka M, Jagodziński P, Pławski A, Andrusiewicz M. HIF1A, EPAS1, and VEGFA: angiogenesis and hypoxia-related gene expression in endometrium and endometrial epithelial tumors. J Appl Genet 2025:10.1007/s13353-025-00939-7. [PMID: 39888575 DOI: 10.1007/s13353-025-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Endometrial cancer (EC) is the second most frequent gynecological malignancy and the sixth most common women's cancer worldwide. EC incidence rate is increasing rapidly. Apart from the classical, we should consider angiogenesis and hypoxia-related genes as a reason for EC manifestation and progression. We compared the patterns of HIF1A, EPAS1, and VEGFA (genes of interest - GOIs) mRNA expression in 92 cases. HIF1A and VEGFA levels were higher in EC patients than in controls. VEGFA differed significantly between controls and both tumor grades G2 and G3, and we observed a positive correlation for HIF1A and VEGFA with EC grading. VEGFA levels were significantly higher in post-menopausal compared to pre-menopausal patients. All GOIs demonstrated strong correlations in pre-menopausal cases and weak correlations in post-menopausal cases. A positive correlation was observed in pre-menopausal controls for all GOIs and in post-menopausal patients for only EPAS1 and VEGFA. HIF1A and EPAS1 positively correlated with VEGFA in post-menopausal EC cases. Multiple linear regression analyses revealed that menopause, body mass index (BMI), and HIF1A expression are significant stimulating factors for EC occurrence. HIF1A levels were higher in EC patients after BMI and comorbidity number adjustment. The gene-to-gene relation could be seen as either a diagnostic or a therapeutic target in EC. Physicians should inform patients about modifiable risk factors such as BMI. Second, more attention should be paid to diagnosing patients with comorbidities in older age and after menopause. These factors should be considered in designing angiogenesis and hypoxia-related gene-targeting therapies.
Collapse
Affiliation(s)
- Monika Englert-Golon
- Department of Gynecology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535, Poznań, Poland
| | - Małgorzata Tokłowicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Aleksandra Żbikowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Stefan Sajdak
- Collegium Medicum University of Zielona Góra, Zyty 28, 65-046, Zielona Góra, Poland
- Poznan University of Medical Sciences, Fredry 10, 61-701, Poznań, Poland
| | - Małgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Paweł Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-701, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St., 60-479, Poznań, Poland
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland.
| |
Collapse
|
4
|
Zhang WY, Wang HB, Deng CY. Advances in human umbilical cord mesenchymal stem cells-derived extracellular vesicles and biomaterial assemblies for endometrial injury treatment. World J Stem Cells 2025; 17:97905. [PMID: 39866901 PMCID: PMC11752459 DOI: 10.4252/wjsc.v17.i1.97905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair. This article reviewed recent research on human umbilical cord mesenchymal stem cells as well as their extracellular vesicles in repairing endometrial injury.
Collapse
Affiliation(s)
- Wan-Yu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Han-Bi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Cheng-Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
5
|
Bostan IS, Mihaila M, Roman V, Radu N, Neagu MT, Bostan M, Mehedintu C. Landscape of Endometrial Cancer: Molecular Mechanisms, Biomarkers, and Target Therapy. Cancers (Basel) 2024; 16:2027. [PMID: 38893147 PMCID: PMC11171255 DOI: 10.3390/cancers16112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one the most prevalent gynecological cancers and, unfortunately, has a poor prognosis due to low response rates to traditional treatments. However, the progress in molecular biology and understanding the genetic mechanisms involved in tumor processes offers valuable information that has led to the current classification that describes four molecular subtypes of endometrial cancer. This review focuses on the molecular mechanisms involved in the pathogenesis of endometrial cancers, such as genetic mutations, defects in the DNA mismatch repair pathway, epigenetic changes, or dysregulation in angiogenic or hormonal signaling pathways. The preclinical genomic and molecular investigations presented allowed for the identification of some molecules that could be used as biomarkers to diagnose, predict, and monitor the progression of endometrial cancer. Besides the therapies known in clinical practice, targeted therapy is described as a new cancer treatment that involves identifying specific molecular targets in tumor cells. By selectively inhibiting these targets, key signaling pathways involved in cancer progression can be disrupted while normal cells are protected. The connection between molecular biomarkers and targeted therapy is vital in the fight against cancer. Ongoing research and clinical trials are exploring the use of standard therapy agents in combination with other treatment strategies like immunotherapy and anti-angiogenesis therapy to improve outcomes and personalize treatment for patients with endometrial cancer. This approach has the potential to transform the management of cancer patients. In conclusion, enhancing molecular tools is essential for stratifying the risk and guiding surgery, adjuvant therapy, and cancer treatment for women with endometrial cancer. In addition, the information from this review may have an essential value in the personalized therapy approach for endometrial cancer to improve the patient's life.
Collapse
Affiliation(s)
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Viviana Roman
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Monica Teodora Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Claudia Mehedintu
- Filantropia Clinical Hospital, 011132 Bucharest, Romania; (I.-S.B.); (C.M.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania
| |
Collapse
|
6
|
Wang T, Peng X, Liu W, Ji M, Sun J. Identification and validation of KIF23 as a hypoxia-regulated lactate metabolism-related oncogene in uterine corpus endometrial carcinoma. Life Sci 2024; 341:122490. [PMID: 38336274 DOI: 10.1016/j.lfs.2024.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
AIMS The "Warburg effect" has been developed from the discovery that hypoxia-inducible factor 1α (HIF-1α) could promote the conversion of pyruvate to lactate. However, no studies have linked hypoxia and lactate metabolism to uterine corpus endometrial carcinoma (UCEC). MAIN METHODS Sequencing and clinical data of patients with UCEC were extracted from The Cancer Genome Atlas (TCGA) database. Hypoxia-related lactate metabolism genes (HRLGs) were screened using Spearman's correlation analysis. A prognostic signature based on HRLGs was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. A comprehensive analysis was conducted on the molecular features, immune environment, mutation patterns, and response to drugs between different risk groups. In vitro and in vivo experiments were performed to verify the function of KIF23. KEY FINDINGS A five HRLG-based prognostic signature was identified. The prognostic outcome was unfavorable for the high-risk subgroup. Observation of increased pathway activities associated with cell proliferation and DNA damage repair was noted in the high-risk subgroup. Additionally, notable correlations were observed between risk score and immune microenvironment, mutational features, and drug responsiveness. Further, we confirmed KIF23 as a novel oncogene in UCEC, whose silencing decreased proliferation and promoted apoptosis of cancer cells. KIF23 knockdown reduced tumor growth in nude mice. We demonstrated that KIF23 was upregulated under hypoxic stress in a HIF-1α dependent manner. Moreover, KIF23 regulated lactate dehydrogenase A expression. SIGNIFICANCE The developed HRLG-related signature was associated with prognosis, immune microenvironment, and drug sensitivity in UCEC. We also revealed KIF23 as a hypoxia-regulated lactate metabolism-related oncogene.
Collapse
Affiliation(s)
- Tao Wang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaotong Peng
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenwen Liu
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mei Ji
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Dey DK, Krause D, Rai R, Choudhary S, Dockery LE, Chandra V. The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacol Ther 2023; 251:108526. [PMID: 37690483 DOI: 10.1016/j.pharmthera.2023.108526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
The tumor microenvironment is surrounded by blood vessels and consists of malignant, non-malignant, and immune cells, as well as signalling molecules, which primarily affect the therapeutic response and curative effects of drugs in clinical studies. Tumor-infiltrating immune cells participate in tumor progression, impact anticancer therapy, and eventually lead to the development of immune tolerance. Immunotherapy is evolving as a promising therapeutic intervention to stimulate and activate the immune system to suppress cancer cell growth. Endometrial cancer (EC) is an immunogenic disease, and in recent years, immunotherapy has shown benefit in the treatment of recurrent and advanced EC. This review discusses the key molecular pathways associated with the intra-tumoral immune response and the involvement of circulatory signalling molecules. Specific immunologic signatures in EC which offer targets for immunomodulating agents, are also discussed. We have summarized the available literature in support of using immunotherapy in EC. Lastly, we have also discussed ongoing clinical trials that may offer additional promising immunotherapy options in the future. The manuscript also explored innovative approaches for screening and identifying effective drugs, and to reduce the financial burdens for the development of personalized treatment strategies. Collectively, we aim to provide a comprehensive review of the role of immune cells and the tumor microenvironment in the development, progression, and treatment of EC.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Danielle Krause
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Swati Choudhary
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lauren E Dockery
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
8
|
Yoshikawa N, Yoshida K, Liu W, Matsukawa T, Hattori S, Yoshihara M, Tamauchi S, Ikeda Y, Yokoi A, Shimizu Y, Niimi K, Kajiyama H. The prognostic significance of DDIT4 in endometrial cancer. Cancer Biomark 2023:CBM220368. [PMID: 37302026 DOI: 10.3233/cbm-220368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite extensive research on endometrial cancer and tumor hypoxic microenvironment, there are no reports exploring the role of DDIT4 in endometrial cancer. OBJECTIVE This study aimed to elucidate the significance of DDIT4, as a prognostic biomarker for endometrial cancer by immunohistochemical staining and statistical analysis. METHODS Four endometrial cancer cells were cultured under normoxia and hypoxia, and the differentially expressed genes were examined using RNA-seq. Immunohistochemical staining for DDIT4 and HIF1A was performed in 86 patients with type II endometrial cancer treated at our hospital, and their correlation with other clinicopathological factors and the prognostic role was analyzed using statistical methods. RESULTS The expression analysis of hypoxia-inducible genes using four types of endometrial cancer cells revealed that DDIT4 was among the 28 genes that were upregulated in all cells. Based on our results of immunohistochemistry of DDIT4 expression in endometrial cancer tissues, univariate and multivariate analyses based on COX regression analysis showed that high DDIT4 expression significantly correlated to favorable prognosis in both progression-free survival and overall survival. Limited to recurrent cases, metastasis to only lymph nodes was significantly related to high DDIT4 expression, whereas metastasis to other parenchymal organs was significantly dominant in patients with low DDIT4 expression. CONCLUSIONS The expression of DDIT4 enables to predict survival and recurrence in type II endometrial cancer.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wenting Liu
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Matsukawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satomi Hattori
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Abstract
Despite the evidence supporting the relevance of obesity and obesity‐associated disorders in the development, management, and prognosis of various cancers, obesity rates continue to increase worldwide. Growing evidence supports the involvement of obesity in the development of gynecologic malignancies. This article explores the molecular basis governing the alteration of hallmarks of cancer in the development of obesity‐related gynecologic malignancies encompassing cervical, endometrial, and ovarian cancers. We highlight specific examples of how development, management, and prognosis are affected for each cancer, incorporate current knowledge on complementary approaches including lifestyle interventions to improve patient outcomes, and highlight how new technologies are helping us better understand the biology underlying this neglected pandemic. This review focuses on how obesity impacts cancer hallmarks in gynecologic malignancies, thus affecting the diagnosis, management, treatment, and prognosis of these diseases.
Collapse
Affiliation(s)
- Ignacio A. Wichmann
- Division of Gynecology and ObstetricsSchool of MedicinePontificia Universidad Católica de ChileSantiagoChile
- Department of ObstetricsSchool of MedicinePontificia Universidad Católica de ChileSantiagoChile
- Advanced Center for Chronic DiseasesPontificia Universidad Católica de ChileSantiagoChile
| | - Mauricio A. Cuello
- Division of Gynecology and ObstetricsSchool of MedicinePontificia Universidad Católica de ChileSantiagoChile
- Department of GynecologySchool of MedicinePontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|