1
|
Caponnetto A, Ferrara C, Fazzio A, Agosta N, Scribano M, Vento ME, Borzì P, Barbagallo C, Stella M, Ragusa M, Scollo P, Barbagallo D, Purrello M, Di Pietro C, Battaglia R. A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells. Genes (Basel) 2024; 15:124. [PMID: 38275605 PMCID: PMC10815046 DOI: 10.3390/genes15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Noemi Agosta
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Marianna Scribano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Maria Elena Vento
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Placido Borzì
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Paolo Scollo
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy;
- Maternal and Child Department, Obstetrics and Gynecology Unit, Cannizzaro Hospital, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| |
Collapse
|
2
|
Modulation and function of Pumilio proteins in cancer. Semin Cancer Biol 2022; 86:298-309. [PMID: 35301091 DOI: 10.1016/j.semcancer.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Post-transcriptional regulation is involved in tumorigenesis, and in this control, RNA-binding proteins are the main protagonists. Pumilio proteins are highly conserved RNA-binding proteins that regulate many aspects of RNA processing. The dysregulation of Pumilio expression is associated with different types of cancer. This review summarizes the roles of Pumilio 1 and Pumilio 2 in cancer and discusses the factors that account for their distinct biological functions. Pumilio levels seem to be related to tumor progression and poor prognoses in some kinds of tumors, such as lung, pancreatic, prostate, and cervical cancers. Pumilio 1 is associated with cancer proliferation, migration, and invasion, and so is Pumilio 2, although there are contradictory reports regarding the latter. Furthermore, the circular RNA, circPUM1, has been described as a miRNAs sponge, regulating miRNA involved in the cell cycle. The expression and function of Pumilio proteins depend on the fine adjustment of a set of modulators, including miRNAs, lncRNAs, and circRNAs; this demonstrates that Pumilio plays an important role in tumorigenesis through a variety of regulatory axes.
Collapse
|