1
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
2
|
Canton L, Lanusse C, Moreno L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals (Basel) 2021; 11:2878. [PMID: 34679899 PMCID: PMC8532868 DOI: 10.3390/ani11102878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Drugs are used in veterinary medicine to prevent or treat animal diseases. When rationally administered to livestock following Good Veterinary Practices (GVP), they greatly contribute to improving the production of food of animal origin. Since humans can be exposed chronically to veterinary drugs through the diet, residues in food are evaluated for effects following chronic exposures. Parameters such as an acceptable daily intake (ADI), the no-observed-adverse-effect level (NOAEL), maximum residue limits (MRLs), and the withdrawal periods (WPs) are determined for each drug used in livestock. Drug residues in food exceeding the MRLs usually appear when failing the GVP application. Different factors related either to the treated animal or to the type of drug administration, and even the type of cooking can affect the level of residues in edible tissues. Residues above the MRLs can have a diverse negative impact, mainly on the consumer's health, and favor antimicrobial resistance (AMR). Drug residue monitoring programmes are crucial to ensure that prohibited or authorized substances do not exceed MRLs. This comprehensive review article addresses different aspects of drug residues in edible tissues produced as food for human consumption and provides relevant information contributing to rational pharmacotherapy in food-producing animals.
Collapse
Affiliation(s)
| | | | - Laura Moreno
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBACONICET, Facultad de Ciencias Veterinarias, Tandil CP7000, Argentina; (L.C.); (C.L.)
| |
Collapse
|
3
|
Rana MS, Lee SY, Kang HJ, Hur SJ. Reducing Veterinary Drug Residues in Animal Products: A Review. Food Sci Anim Resour 2019; 39:687-703. [PMID: 31728441 PMCID: PMC6837901 DOI: 10.5851/kosfa.2019.e65] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 11/11/2022] Open
Abstract
A survey we conducted suggests that the ingestion of veterinary drug residues in
edible animal parts constitutes a potential health hazard for its consumers,
including, specifically, the possibility of developing multidrug resistance,
carcinogenicity, and disruption of intestinal normal microflora. The survey
results indicated that antibiotics, parasitic drugs, anticoccidial, or
nonsteroidal anti-inflammatory drugs (NSAIDs) are broadly used, and this use in
livestock is associated with the appearance of residues in various animal
products such as milk, meat, and eggs. We observed that different cooking
procedures, heating temperatures, storage times, fermentation, and pH have the
potential to decrease drug residues in animal products. Several studies have
reported the use of thermal treatments and sterilization to decrease the
quantity of antibiotics such as tetracycline, oxytetracycline, macrolides, and
sulfonamides, in animal products. Fermentation treatments also decreased levels
of penicillin and pesticides such as dimethoate, malathion,
Dichlorodiphenyldichloroethylene, and lindane. pH, known to influence decreases
in cloxacillin and oxacillin levels, reportedly enhanced the dissolution of
antimicrobial drug residues. Pressure cooking also reduced aldrin, dieldrin, and
endosulfan in animal products. Therefore, this review provides updated
information on the control of drug residues in animal products, which is of
significance to veterinarians, livestock producers, and consumer health.
Collapse
Affiliation(s)
- Md Shohel Rana
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hae Jin Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Virkel G, Ballent M, Lanusse C, Lifschitz A. Role of ABC Transporters in Veterinary Medicine: Pharmaco- Toxicological Implications. Curr Med Chem 2019; 26:1251-1269. [DOI: 10.2174/0929867325666180201094730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Unlike physicians, veterinary practitioners must deal with a number of animal species with crucial differences in anatomy, physiology and metabolism. Accordingly, the pharmacokinetic behaviour, the clinical efficacy and the adverse or toxic effects of drugs may differ across domestic animals. Moreover, the use of drugs in food-producing species may impose a risk for humans due to the generation of chemical residues in edible products, a major concern for public health and consumer's safety. As is clearly known in human beings, the ATP binding cassette (ABC) of transport proteins may influence the bioavailability and elimination of numerous drugs and other xenobiotics in domestic animals as well. A number of drugs, currently available in the veterinary market, are substrates of one or more transporters. Therefore, significant drug-drug interactions among ABC substrates may have unpredictable pharmacotoxicological consequences in different species of veterinary interest. In this context, different investigations revealed the major relevance of P-gp and other transport proteins, like breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), in both companion and livestock animals. Undoubtedly, the discovery of the ABC transporters and the deep understanding of their physiological role in the different species introduced a new paradigm into the veterinary pharmacology. This review focuses on the expression and function of the major transport proteins expressed in species of veterinary interest, and their impact on drug disposition, efficacy and toxicity.
Collapse
Affiliation(s)
- Guillermo Virkel
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Mariana Ballent
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Adrián Lifschitz
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| |
Collapse
|
5
|
Lanusse C, Canton C, Virkel G, Alvarez L, Costa-Junior L, Lifschitz A. Strategies to Optimize the Efficacy of Anthelmintic Drugs in Ruminants. Trends Parasitol 2018; 34:664-682. [DOI: 10.1016/j.pt.2018.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
|
6
|
Lifschitz A, Lanusse C, Alvarez L. Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants. N Z Vet J 2017; 65:176-184. [PMID: 28415922 DOI: 10.1080/00480169.2017.1317222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anthelmintic drugs require effective concentrations to be attained at the site of parasite location for a certain period to assure their efficacy. The processes of absorption, distribution, metabolism and excretion (pharmacokinetic phase) directly influence drug concentrations attained at the site of action and the resultant pharmacological effect. The aim of the current review article was to provide an overview of the relationship between the pharmacokinetic features of different anthelmintic drugs, their availability in host tissues, accumulation within target helminths and resulting therapeutic efficacy. It focuses on the anthelmintics used in cattle and sheep for which published information on the overall topic is available; benzimidazoles, macrocyclic lactones and monepantel. Physicochemical properties, such as water solubility and dissolution rate, determine the ability of anthelmintic compounds to accumulate in the target parasites and consequently final clinical efficacy. The transcuticular absorption process is the main route of penetration for different drugs in nematodes and cestodes. However, oral ingestion is a main route of drug entry into adult liver flukes. Among other factors, the route of administration may substantially affect the pharmacokinetic behaviour of anthelmintic molecules and modify their efficacy. Oral administration improves drug efficacy against nematodes located in the gastroinestinal tract especially if parasites have a reduced susceptibility. Partitioning of the drug between gastrointestinal contents, mucosal tissue and the target parasite is important to enhance the drug exposure of the nematodes located in the lumen of the abomasum and/or small intestine. On the other hand, large inter-animal variability in drug exposure and subsequent high variability in efficacy is observed after topical administration of anthelmintic compounds. As it has been extensively demonstrated under experimental and field conditions, understanding pharmacokinetic behaviour and identification of different factors affecting drug activity is important for achieving optimal parasite control and avoiding selection for drug resistance. The search for novel alternatives to deliver enhanced drug concentrations within target helminth parasites may contribute to avoiding misuse, and prolong the lifespan of existing and novel anthelmintic compounds in the veterinary pharmaceutical market.
Collapse
Affiliation(s)
- A Lifschitz
- a Facultad de Ciencias Veterinarias, UNCPBA, Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN) , UNCPBA-CICPBA-CONICET , Campus Universitario, 7000 - Tandil , Argentina
| | - C Lanusse
- a Facultad de Ciencias Veterinarias, UNCPBA, Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN) , UNCPBA-CICPBA-CONICET , Campus Universitario, 7000 - Tandil , Argentina
| | - L Alvarez
- a Facultad de Ciencias Veterinarias, UNCPBA, Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN) , UNCPBA-CICPBA-CONICET , Campus Universitario, 7000 - Tandil , Argentina
| |
Collapse
|
7
|
Lanusse CE, Alvarez LI, Lifschitz AL. Gaining Insights Into the Pharmacology of Anthelmintics Using Haemonchus contortus as a Model Nematode. ADVANCES IN PARASITOLOGY 2016; 93:465-518. [PMID: 27238011 DOI: 10.1016/bs.apar.2016.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Progress made in understanding pharmacokinetic behaviour and pharmacodynamic mechanisms of drug action/resistance has allowed deep insights into the pharmacology of the main chemical classes, including some of the few recently discovered anthelmintics. The integration of pharmaco-parasitological research approaches has contributed considerably to the optimization of drug activity, which is relevant to preserve existing and novel active compounds for parasite control in livestock. A remarkable amount of pharmacology-based knowledge has been generated using the sheep abomasal nematode Haemonchus contortus as a model. Relevant fundamental information on the relationship among drug influx/efflux balance (accumulation), biotransformation/detoxification and pharmacological effects in parasitic nematodes for the most traditional anthelmintic chemical families has been obtained by exploiting the advantages of working with H. contortus under in vitro, ex vivo and in vivo experimental conditions. The scientific contributions to the pharmacology of anthelmintic drugs based on the use of H. contortus as a model nematode are summarized in the present chapter.
Collapse
Affiliation(s)
- C E Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Campus Universitario, Tandil, Argentina
| | - L I Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Campus Universitario, Tandil, Argentina
| | - A L Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Campus Universitario, Tandil, Argentina
| |
Collapse
|
8
|
|
9
|
Lanusse C, Alvarez L, Lifschitz A. Pharmacological knowledge and sustainable anthelmintic therapy in ruminants. Vet Parasitol 2013; 204:18-33. [PMID: 24315694 DOI: 10.1016/j.vetpar.2013.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022]
Abstract
Considering the increasing concern for the development of anthelmintic resistance, the use of pharmacology-based information is critical to design successful strategies for the future of parasite control in livestock. Integrated evaluation of the available knowledge on pharmacological features is required to optimize the activity and to achieve sustainable use of the existing anthelmintic drugs. The assessment of the drug disposition in the host and the comprehension of the mechanisms of drug influx/efflux/detoxification in different target helminths, has signified a relevant progress on the understanding of the pharmacology of anthelmintic drugs in ruminant species. However, additional scientific knowledge on how to improve the use of available and novel molecules is required to avoid/delay resistance development. Different pharmacokinetic-based approaches to enhance parasite exposure and the use of mixtures of drugs from different chemical families have been proposed as valid strategies to delay the development of anthelmintic resistance. The rationale behind using drug combinations is based on the fact that individual worms may have a lower degree of resistance to a multiple component formulation (each chemical with different mode of action/resistance) compared to that observed when a single anthelmintic is used. However, the limited available information is unclear on the potential additive or synergistic effects occurring after co-administration of two (or more) drugs with different mode of action. This review article contributes to the topic with some pharmacology-based data emerging from the assessment of combined anthelmintic preparations. The activity against multi-drug-resistant isolates based on novel modes of action is a highly favorable element to judge the future of some of the recently developed anthelmintic compounds. More specific knowledge on the basic host-parasite kinetic behavior as well as a highly responsible use of those novel compounds will be necessary to secure their maximum lifespans. Overall, the outcome from integrated pharmaco-parasitological research approaches has greatly contributed to optimize drug activity, which seems relevant to preserve existing and particularly novel active ingredients as useful tools for parasite control in livestock animals.
Collapse
Affiliation(s)
- Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina.
| | - Luis Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Adrian Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| |
Collapse
|
10
|
Increased action of triclabendazole (TCBZ) in vitro against a TCBZ-resistant isolate of Fasciola hepatica following its co-incubation with the P-glycoprotein inhibitor, R(+)-verapamil. Exp Parasitol 2013; 135:642-53. [DOI: 10.1016/j.exppara.2013.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/09/2013] [Accepted: 09/22/2013] [Indexed: 01/31/2023]
|