1
|
de León Guerra L, Padilla Montaño N, Moujir L. Interference of Celastrol with Cell Wall Synthesis and Biofilm Formation in Staphylococcus epidermidis. Antibiotics (Basel) 2025; 14:26. [PMID: 39858312 PMCID: PMC11759760 DOI: 10.3390/antibiotics14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The emergence of antibiotic-resistant bacteria, including Staphylococcus epidermidis, underscores the need for novel antimicrobial agents. Celastrol, a natural compound derived from the plants of the Celastraceae family, has demonstrated promising antibacterial and antibiofilm properties against various pathogens. Objectives: This study aims to evaluate the antibacterial effects, mechanism of action, and antibiofilm activity of celastrol against S. epidermidis, an emerging opportunistic pathogen. Methods: To investigate the mechanism of action of celastrol, its antibacterial activity was evaluated by determining the time-kill curves, assessing macromolecular synthesis, and analysing its impact on the stability and functionality of the bacterial cell membrane. Additionally, its effect on biofilm formation and disruption was examined. Results: Celastrol exhibited significant antibacterial activity with a minimal inhibitory concentration (MIC) of 0.31 μg/mL and minimal bactericidal concentration (MBC) of 15 μg/mL, which is superior to conventional antibiotics used as control. Time-kill assays revealed a concentration-dependent bactericidal effect, with a shift from bacteriostatic activity at lower concentrations to bactericidal and lytic effect at higher concentrations. Celastrol inhibited cell wall biosynthesis by blocking the incorporation of N-acetylglucosamine (NAG) into peptidoglycan. In contrast, the cytoplasmic membrane was only affected at higher concentrations of the compound or after prolonged exposure times. Additionally, celastrol was able to disrupt biofilm formation at concentrations of 0.9 μg/mL and to eradicate pre-formed biofilms at 7.5 μg/mL in S. epidermidis. Conclusions: Celastrol exhibits significant antibacterial and antibiofilm activities against S. epidermidis, with a primary action on cell wall synthesis. Its efficacy in disrupting the formation of biofilms and pre-formed biofilms suggests its potential as a therapeutic agent for infections caused by biofilm-forming S. epidermidis resistant to conventional treatments.
Collapse
Affiliation(s)
- Leandro de León Guerra
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, Avenida Astrofísico Fco Sánchez s/n, 38206 La Laguna, Spain (N.P.M.)
| | - Nayely Padilla Montaño
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, Avenida Astrofísico Fco Sánchez s/n, 38206 La Laguna, Spain (N.P.M.)
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43 s/n x 96, Paseo de las Fuentes y 40 Col, Mérida 97069, Mexico
| | - Laila Moujir
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, Avenida Astrofísico Fco Sánchez s/n, 38206 La Laguna, Spain (N.P.M.)
| |
Collapse
|
2
|
Shan Y, Zhao J, Wei K, Jiang P, Xu L, Chang C, Xu L, Shi Y, Zheng Y, Bian Y, Zhou M, Schrodi SJ, Guo S, He D. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front Pharmacol 2023; 14:1282610. [PMID: 38027004 PMCID: PMC10646552 DOI: 10.3389/fphar.2023.1282610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Hernandes C, Miguita L, de Sales RO, Silva EDP, de Mendonça POR, Lorencini da Silva B, Klingbeil MDFG, Mathor MB, Rangel EB, Marti LC, Coppede JDS, Nunes FD, Pereira AMS, Severino P. Anticancer Activities of the Quinone-Methide Triterpenes Maytenin and 22-β-hydroxymaytenin Obtained from Cultivated Maytenus ilicifolia Roots Associated with Down-Regulation of miRNA-27a and miR-20a/miR-17-5p. Molecules 2020; 25:molecules25030760. [PMID: 32050628 PMCID: PMC7038027 DOI: 10.3390/molecules25030760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
Natural triterpenes exhibit a wide range of biological activities. Since this group of secondary metabolites is structurally diverse, effects may vary due to distinct biochemical interactions within biological systems. In this work, we investigated the anticancer-related activities of the quinone-methide triterpene maytenin and its derivative compound 22-β-hydroxymaytenin, obtained from Maytenus ilicifolia roots cultivated in vitro. Their antiproliferative and pro-apoptotic activities were evaluated in monolayer and three-dimensional cultures of immortalized cell lines. Additionally, we investigated the toxicity of maytenin in SCID mice harboring tumors derived from a squamous cell carcinoma cell line. Both isolated molecules presented pronounced pro-apoptotic activities in four cell lines derived from head and neck squamous cell carcinomas, including a metastasis-derived cell line. The molecules also induced reactive oxygen species (ROS) and down-regulated microRNA-27a and microRNA-20a/miR-17-5p, corroborating with the literature data for triterpenoids. Intraperitoneal administration of maytenin to tumor-bearing mice did not lead to pronounced histopathological changes in kidney tissue, suggesting low nephrotoxicity. The wide-ranging activity of maytenin and 22-β-hydroxymaytenin in head and neck cancer cells indicates that these molecules should be further explored in plant biochemistry and biotechnology for therapeutic applications.
Collapse
Affiliation(s)
- Camila Hernandes
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | - Lucyene Miguita
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (L.M.); (F.D.N.)
| | - Romario Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | - Elisangela de Paula Silva
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | - Pedro Omori Ribeiro de Mendonça
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | - Bruna Lorencini da Silva
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | | | - Monica Beatriz Mathor
- Nuclear and Energy Research Institute IPEN-CNEN/SP, São Paulo 05508-000, Brazil; (M.d.F.G.K.); (M.B.M.)
| | - Erika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | - Luciana Cavalheiro Marti
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
| | - Juliana da Silva Coppede
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (J.d.S.C.); (A.M.S.P.)
| | - Fabio Daumas Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (L.M.); (F.D.N.)
| | - Ana Maria Soares Pereira
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto 14096-900, Brazil; (J.d.S.C.); (A.M.S.P.)
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (C.H.); (R.O.d.S.); (E.d.P.S.); (P.O.R.d.M.); (B.L.d.S.); (E.B.R.); (L.C.M.)
- Correspondence: ; Tel.: +55-11-21510507
| |
Collapse
|