1
|
Guo YJ, Pang JR, Zhang Y, Li ZR, Zi XL, Liu HM, Wang N, Zhao LJ, Gao Y, Wang B, Herdewijn P, Jin CY, Liu Y, Zheng YC. Neddylation-dependent LSD1 destabilization inhibits the stemness and chemoresistance of gastric cancer. Int J Biol Macromol 2024; 254:126801. [PMID: 37689288 DOI: 10.1016/j.ijbiomac.2023.126801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Histone lysine-specific demethylase 1 (LSD1) expression has been evaluated in multiple tumors, including gastric cancer (GC). However, the mechanisms underlying LSD1 dysregulation in GC remain largely unclear. In this study, neural precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) was identified to be conjugated to LSD1 at K63 by ubiquitin-conjugating enzyme E2 M (UBE2M), and this neddylated LSD1 could promote LSD1 ubiquitination and degradation, leading to a decrease of GC cell stemness and chemoresistance. Herein, our findings revealed a novel mechanism of LSD1 neddylation and its contribution to decreasing GC cell stemness and chemoresistance. Taken together, our findings may whistle about the future application of neddylation inhibitors.
Collapse
Affiliation(s)
- Yan-Jia Guo
- Henan Key Laboratory of Precision Clinical Pharmacy, Academy of Medical Sciences, Zhengzhou University, Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-Lin Zi
- Department of Urology, University of California, Irvine, CA, USA; Department of Pharmacology, University of California, Irvine, CA, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Piet Herdewijn
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000 Leuven, Belgium
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Ying Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Sharma S, Sarkar O, Ghosh R. Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy. Curr Protein Pept Sci 2024; 25:780-796. [PMID: 38910429 DOI: 10.2174/0113892037274615240528113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.
Collapse
Affiliation(s)
- Sayan Sharma
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Oindrila Sarkar
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Rajgourab Ghosh
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|