1
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
2
|
Paranthaman P, Veerappapillai S. Tackling suppressive cancer microenvironment by NARF-derived immune modulatory vaccine and its validation using simulation strategies. FRONTIERS IN PHYSICS 2024; 12. [DOI: 10.3389/fphy.2024.1342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Introduction: Targeting tumor microenvironment is beneficial and present an ideal setting for the development of futuristic immunotherapy. Here, we make use of Nuclear prelamin A recognition factor (NARF), a protein linked to the coactivation of transcriptional regulators in human breast cancer stem cells (CSC) in our investigation.Methods: In this study, we initially computed the epitope regions possessing the ability to stimulate both T and B cells within the NARF protein. These identified epitope areas were fused with an adjuvant such as RpfB and RpfE as well as linkers like AAY, GPGPG, KK, and EAAAK. The constructed vaccine was further characterized by assessing its physicochemical properties and population coverage. The potential interactions of the designed vaccine with different toll-like receptors were examined by a sequence of computational studies. Of note, docking study were employed to understand its mechanism of action. Molecular dynamics and immune simulation studies were conducted to comprehend more into their structural stability and immune responses. The resultant vaccine was back-translated, codon-optimised and introduced into pET-28 (+) vector.Results and discussion: We hypothesize from the results that the designed NARF protein-based vaccine in our analysis could effectively provoke the immune responses in the target organism through TLR-7 binding and promotes MHC class-II mediated antigen presentation. Indeed, comprehensive evaluations conducted in both in vitro and in vivo settings are imperative to substantiate the safety and efficacy of the developed vaccine.
Collapse
|
3
|
Noraldeen SAM, Rasulova I, Lalitha R, Hussin F, Alsaab HO, Alawadi AH, Alsaalamy A, Sayyid NH, Alkhafaji AT, Mustafa YF, Shayan SK. Involving stemness factors to improve CAR T-cell-based cancer immunotherapy. Med Oncol 2023; 40:313. [PMID: 37779152 DOI: 10.1007/s12032-023-02191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Treatment with chimeric antigen receptor (CAR) T cells indicated remarkable clinical responses with liquid cancers such as hematological malignancies; however, their therapeutic efficacy faced with many challenges in solid tumors due to severe toxicities, antigen evasion, restricted and limited tumor tissue trafficking and infiltration, and, more importantly, immunosuppressive tumor microenvironment (TME) factors that impair the CAR T-cell function adds support survival of cancer stem cells (CSCs), responsible for tumor recurrence and resistance to current cancer therapies. Therefore, in-depth identification of TME and development of more potent CAR platform targeting CSCs may overcome the raised challenges, as presented in this review. We also discuss recent stemness-based innovations in CAR T-cell production and engineering to improve their efficacy in vivo, and finally, we propose solutions and strategies such as oncolytic virus-based therapy and combination therapy to revive the function of CAR T-cell therapy, especially in TME of solid tumors in future.
Collapse
Affiliation(s)
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., 100007, Tashkent, Uzbekistan
| | - Repudi Lalitha
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hyderabad, Telangana, India.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, 21944, Taif, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Nidhal Hassan Sayyid
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
4
|
Cryoimmunology: Opportunities and challenges in biomedical science and practice. Cryobiology 2021; 100:1-11. [PMID: 33639110 DOI: 10.1016/j.cryobiol.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Autologous and allogeneic cryoimmunological medicine is a brand new branch of biomedical science and clinical practice that examines the features and formation of the immune response to immunogenic properties of normal and malignant biological structures altered by ultralow temperature, as well as specific changes in the structural and functional characteristics of immune cells and tissues after cryopreservation. Cryogenic protein denaturation phenomenon provides important insights into the mechanisms underlying the damage to cryogenic lesions immediately after freeze-thawing sessions in bioscience and medicine applications. The newly formed cryocoagulated protein components (cryomodified protein components) are crucial in cryoimmunology from the perspective of the formation of immunological substances at ultralow temperatures. Dendritic cells and cryocell detritus (cryocell debris) formed in living biological tissue after exposure to ultralow temperature in vivo may be an indication of one of the essential mechanisms involved in the cryoimmunological response of living structures to the impact of ultralow temperature exposure. Hence, the formation of new autologous and allogeneic cryoinduced immunogenic substances is a novel concept in biomedical research globally. Accordingly, this review focuses on issues concerning the peculiarities of the interaction of the immune system with a dominant malignant neoplasm tissue after exposure to subzero temperatures, considering the original cryogenic technical approaches. We present an overview of the state-of-the-art methods of cryoimmunology, and their major developments, past and present. The need for the delineation of structural and functional characteristics of the biological substrates of the immune system after cryopreservation that can be used in adoptive cell therapy, especially in cancer patients, is emphasized.
Collapse
|
5
|
Guo M, You C, Dong W, Luo B, Wu Y, Chen Y, Li J, Pan M, Li M, Zhao F, Dou J. The surface dominant antigen MUC1 is required for colorectal cancer stem cell vaccine to exert anti-tumor efficacy. Biomed Pharmacother 2020; 132:110804. [PMID: 33017767 DOI: 10.1016/j.biopha.2020.110804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), initiated and maintained by colorectal cancer stem cells (CCSCs), ranks the third most common cancers and has drawn wide attentions worldwide. Therefore, targeting clearance of CCSCs has become an important strategy of CRC immunotherapy. Mucin1 (MUC1) is a tumor-associated cell surface antigen of CRC, but its role in CCSC vaccine remains unclear. In the study, we demonstrated that MUC1 may be a dominant antigen to exert antitumor immunity in CCSC vaccine. First, CCSCs were enriched from CT26 cell line via a serum-free sphere formation approach, and were identified by detecting expression of CD133, ALDH, and ALCAM. Then, the isolated CCSCs were frozen for 30 min and thawed for 30 min to prepare the cell lysate. The specific anti-MUC1 antibody was added to the cell lysate to neutralize the dominant antigen MUC1. Finally, mice were subcutaneously immunized with the cell lysate, followed by a challenge with CT26 cells at one week after final vaccination. Attractively, CCSC vaccine significantly activated the NK cells, T cells, and B cells, resulting in inhibiting the tumor growth via a target killing of CCSCs as evidenced by a decrease of CD133+cells in tumor compared to CCSC vaccine with specific anti-MUC1 antibody. In addition, CCSC vaccine reduced expression of inflammatory factors in vaccinated mice. As expected, neutralizing antibody against MUC1 significantly impaired the antitumor efficacy of CCSC vaccine. Overall, CCSC vaccine could serve as a potent vaccine for CRC immunotherapy. The surface dominant antigen MUC1 may play a key role in regulating immunogenicity of CCSCs.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Chengzhong You
- Department of General Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, China
| | - Wenqi Dong
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Biao Luo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Yuheng Wu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Yanuo Chen
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jianping Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
7
|
Wang W, Wang C, Xu H, Gao Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int J Biol Sci 2020; 16:921-934. [PMID: 32140062 PMCID: PMC7053332 DOI: 10.7150/ijbs.42300] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is the key enzyme responsible for metabolism of the alcohol metabolite acetaldehyde in the liver. In addition to conversion of the acetaldehyde molecule, ALDH is also involved in other cellular functions. Recently, many studies have investigated the involvement of ALDH expression in viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. Notably, ALDH2 expression has been linked with liver cancer risk, as well as pathogenesis and prognosis, and has emerged as a promising therapeutic target. Of note, approximately 8% of the world's population, and approximately 30-40% of the population in East Asia carry an inactive ALDH2 gene. This review summarizes new progress in understanding tissue-specific acetaldehyde metabolism by ALDH2 as well as the association of ALDH2 gene polymorphisms with liver disease and cancer. New research directions emerging in the field are also briefly discussed.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Chunguang Wang
- Department of Thoracic & Cardiovascular Surgery, Second Clinical College, Jilin University, Changchun, 130041, China
| | - Hongxin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|